PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of phenomenological model parameters using density dependent laws for prediction of mechanical response of cellular materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cellular materials have found wide-spread attention in structural applications involving impact energy absorption. The choice of the most suitable density of a cellular material, for a particular impact application, is based on its mechanical response, which may be obtained through experimental tests and/or models. A current study is focused on prediction of a mechanical response of a wide range of densities of a cellular material using available experimental data of very few densities. Best fitting-parameters of four selected phenomenological models, to fit the available experimental response of three distinct aluminum foam densities, are evaluated. The relationship between the best-fitting parameters and density of the foam is established by using two types of functions. The first function is based on a power law relationship between each parameter and foam density ρ, while the second function assumes each parameter as a linear combination of ρn and ρ, where n is any real number. The former function is found reasonable in the cases of both parameter interpolation and extrapolation while the latter is found reasonable for a parameter interpolation only. The findings of a current study emphasize for a conscious approach during selection of density dependent laws for phenomenological model parameters to avoid any erroneous or misleading design decision.
Rocznik
Strony
181–191
Opis fizyczny
Bibliogr. 12, wykr., rys., tab.
Twórcy
  • School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, P.R. China
autor
  • School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, P.R. China
  • State Key Laboratory of Explosion Science and Technology, 100081 Beijing, P.R. China
autor
  • School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, P.R. China
Bibliografia
  • [1] Q. Liu and G. Subhash, “A phenomenological constitutive model for foams under large deformations”, Polymer Engineering Science 16, 463-473 (2006).
  • [2] J.A. Reglero, E. Solórzano, M.A. Rodríguez-Pérez, J.A. de Saja, and E. Porras, “Design and testing of an energy absorber prototype based on aluminum foams”, Materials & Design 31, 3568-3573 (2010).
  • [3] S. Hou, Q. Li, S. Long, X. Yang, and W. Li, “Crashworthiness design for foam filled thin-wall structures”, Materials & Design 30, 2024-2032 (2009).
  • [4] Q. Liu, G. Subhash, and X.L. Gao, “A parametric study on crushability of open-cell structural polymeric foams”, J. Porous Materials 12, 233-248 (2005).
  • [5] M. Avalle, G. Belingardi, and A. Ibba, “Mechanical models of cellular solids: Parameters identification from experimental tests”, Int. J. Impact Engineering 34, 3-27 (2007).
  • [6] S. Kiernan and M.D. Gilchrist, “Towards a virtual functionally graded foam: defining the large strain constitutive response of an isotropic closed cell polymeric cellular solid”, Int. J. Engineering Science 48, 373-1386 (2010).
  • [7] M.W. Schraad and F.H. Harlow, “A stochastic constitutive model for disordered cellular materials: finite-strain uni-axial compression”, Int. J. Solids and Structures 43, 3542-3568 (2006).
  • [8] S. Kiernan, L. Cui, and M.D. Gilchrist, “Propagation of a stress wave through functionally graded foam”, Int. J. Non-Linear Mechanics 44, 456-468 (2009).
  • [9] L. Cui, S. Kiernan, and M.D. Gilchrist, “Designing the energy absorbing capacity of functionally graded foam materials”, Materials Science and Engineering A 507, 215-225 (2009).
  • [10] Z. Wang, L. Jing, and L. Zhao, “Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading”, Trans. Nonferrous Met. Soc. China 21, 449-454 (2011).
  • [11] K.C. Rusch, “Load-compression behavior of flexible foams”, J. Applied Polymer Science 13, 2297-311 (1969).
  • [12] L.J. Gibson and M.F. Ashby, Cellular Solids: Structures and Properties, second edition, Cambridge University Press, Cambridge, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526d6213-0864-4e1c-8b7b-c30366fa992a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.