PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of liquid-gas flow in pipeline using gamma-ray absorption technique and advanced signal processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of the gamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble, and bubble one. In the research, a radiometric set consisting of two Am-241 sources and two NaI(TI) scintillation detectors have been applied. Based on the analysis of the signals from both scintillation detectors, the gas phase velocity was calculated using the cross-correlation method (CCM). The signal from one detector was used to determine the void fraction and to recognise the flow regime. In the latter case, a Multi-Layer Perceptron-type artificial neural network (ANN) was applied. To reduce the number of signal features, the principal component analysis (PCA) was used. The expanded uncertainties of gas velocity and void fraction obtained for the flow types studied in this paper did not exceed 4.3% and 7.4% respectively. All three types of analyzed flows were recognised with 100% accuracy. Results of the experiments confirm the usefulness of the gamma-ray absorption method in combination with radiometric signal analysis by CCM and ANN with PCA for comprehensive analysis of liquid-gas flow in the pipeline.
Rocznik
Strony
145--159
Opis fizyczny
Bibliogr. 40 po., rys., tab., wykr., wzory
Twórcy
autor
  • Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Łódź University of Technology, Institute of Applied Computer Science, Żeromskiego 116, 90-537 Łódź, Poland
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Falcone, G., Hewitt, G. F., & Alimonti, C. (2009). Multiphase flow metering: principles and applications, Elsevier.
  • [2] Powell, L. (2008). Experimental techniques for multiphase flows. Physics of Fluids, 20(4), 040605. https://doi.org/10.1063/1.2911023
  • [3] Tan, C., Zhao, J., & Dong, F. (2015). Gas-water two-phase flow characterisation with electrical resistance tomography and multivariate multiscale entropy analysis. ISA Transactions, 55, 241-249. https://doi.org/10.1016/j.isatra.2014.09.010
  • [4] Mohamad, E. J., Rahim, R. A., Rahiman, M. H. F., Ameran, H. L. M., Muji, S. Z. M., & Marwah, O. M. F. (2016). Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor. Flow Measurement and Instrumentation, 47, 62-70. https://doi.org/10.1016/j.flowmeasinst.2015.12.004
  • [5] Rahim, R. A., Yunos, Y. M., Rahiman, M. H. F., Muji, S. Z. M., Thiam, C. K., & Rahim, H. A. (2012). Optical tomography: Velocity profile measurement using orthogonal and rectilinear arrangements. Flow Measurement and Instrumentation, 23(1), 49-55. https://doi.org/10.1016/j.flowmeasinst.2011.10.006
  • [6] Heindel, T. H., Gray, J. N., & Jensen, T. C. (2008). An X-ray system for visualizing fluid flows. Flow Measurement Instrumentation, 19(2), 67-78. https://doi.org/10.1016/j.flowmeasinst.2007.09.003
  • [7] Lindken, R., & Merzkirch, W. (2002). A novel PIV technique for measurements in multi-phase flows and its application to two-phase bubbly flows. Experiments in Fluids, 33, 814-825. https://doi.org/10.1007/s00348-002-0500-1
  • [8] Lamadie, F., Charton, S., de Langlard, M., Ouattara, M., Sentis, M. P., Debayle, J., & Onofri, F. R. (2017). Development of optical techniques for multiphase flows characterization. Fluids Engineering Division Summer Meeting, USA. https://doi.org/10.1115/FEDSM2017-69188
  • [9] Tamburini, A., Cipollina, A., Micale, G., & Brucato, A. (2013). Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique. Chemical Engineering Science, 87, 341-358. https://doi.org/10.1016/j.ces.2012.11.005
  • [10] Johansen, G. A., & Jackson, P. (2004). Radioisotope gauges for industrial process measurements. John Wiley. https://doi.org/10.1002/0470021098
  • [11] Zych, M., Hanus, R., Vlasak, P., Jaszczur, M., & Petryka, L. (2017). Radiometric methods in the measurement of particle-laden flows. Powder Technology, 318, 491-500. https://doi.org/10.1016/j.powtec.2017.06.019
  • [12] Zych, M., Hanus, R., Jaszczur, M., Mosorov, V., & Świsulski, D. (2018). Radioisotope measurement of selected parameters of liquid-gas flow using single detector system. EPJ Web of Conferences, 180, 02124. https://doi.org/10.1051/epjconf/201818002124
  • [13] Hanus, R. (2015). Application of the Hilbert Transform to measurements of liquid-gas flow using gamma ray densitometry. International Journal of Multiphase Flow, 72, 210-217. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.002
  • [14] Jaszczur, M. (2011). Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow. Archives of Mechanics, 63(1), 77-91.
  • [15] Pant, H. J., Goswami, S., Sharma, V. K., Mukherjee, T., Mukherjee, K., Guchhait, P. K., Rastogi, S., Pal, S., Thomas, S., Mukherjee, P., & Pujari, P. K. (2020). Investigation of flow dynamics of primary coolant in a delay tank of a swimming pool-type nuclear reactor using radiotracer technique. Applied Radiation and Isotopes, 156, 108982. https://doi.org/10.1016/j.apradiso.2019.108982
  • [16] Kasban, H., Ali, E. H., & Arafa, H. (2017). Diagnosing plant pipeline system performance using radiotracer techniques. Nuclear Engineering and Technology, 49(1), 196-208. https://doi.org/10.1016/j.net.2016.08.011
  • [17] Sugiharto, S., Stegowski, Z., Furman, L., Suud, Z., Kurniadi, R., Waris, A., & Abidin, Z. (2013). Dispersion determination in a turbulent pipe flow using radiotracer data and CFD analysis. Computers & Fluids, 79, 77-81. https://doi.org/10.1016/j.compfluid.2013.03.009
  • [18] Salgado, C. M., Brandão, L. E., Schirru, R., Pereira, C. M., da Silva, A. X., & Ramos, R. (2009). Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network. Applied Radiation and Isotopes, 67(9), 1812-1818. https://doi.org/10.1016/j.apradiso.2009.02.093
  • [19] Roshani, G. H., Nazemi, E., & Feghhi, S. A. H. (2016). Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas-liquid two phase flows. Flow Measurement Instrumentation, 50, 73-79. https://doi.org/10.1016/j.flowmeasinst.2016.06.013
  • [20] Halstensen, M., Amundsen, L., & Arvoh, B. K. (2014). Three-way PLS regression and dual energy gamma densitometry for prediction of total volume fractions and enhanced flow regime identification in multiphase flow. Flow Measurement Instrumentation, 40, 133-141. https://doi.org/10.1016/j.flowmeasinst.2014.09.006
  • [21] Hanus, R., Zych, M., Jaszczur, M. Szlachta, A., & Golijanek-Jędrzejczyk, A. (2019). Signal processing in the investigation of two-phase liquid-gas flow by gamma-ray absorption.6th - 2019 International Conference on Control, Decision and Information Technologies (CoDIT’19), France. https://doi.org/10.1109/CoDIT.2019.8820498
  • [22] Hanus, R., Zych, M., & Petryka, L. (2017). Investigation of liquid-gas flow in the pipeline by gamma-ray absorption. Przegląd Elektrotechniczny, 93, 97-100 (in Polish). http://doi.org/10.15199/48.2017.09.19
  • [23] Beck, M. S., & Pląskowski, A. (1987). Cross-correlation flowmeters. Adam Hilger.
  • [24] Qiu, F., Liu, Z., Liu, R., Quan, X., Tao, C., & Wang, Y. (2019). Fluid flow signals processing based on fractional Fourier transform in a stirred tank reactor. ISA Transactions,90, 268-277. https://doi.org/10.1016/j.isatra.2019.01.004
  • [25] Zych, M., Hanus, R., Wilk, B., Petryka, L., & Świsulski, D. (2018). Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows. Measurement, 129, 288-295. https://doi.org/10.1016/j.measurement.2018.07.035
  • [26] Joint Committee for Guides in Metrology. (2008). Guide to the Expression of Uncertainty in Measurement (JCGM 100:2008). https://www.bipm.org/en/publications/guides/gum.html
  • [27] Zych, M., Hanus, R., Jaszczur, M., Strzępowicz, A., Petryka, L., & Mastej, W. (2016). Determination of void fraction in two phase liquid-gas flow using gamma absorption. Journal of Physics: Conference Series, 745(3), 032124. https://doi.org/10.1088/1742-6596/745/3/032124
  • [28] Roshani, G. H., Nazemi, E., Feghhi, S. A. H., & Setayeshi, S. (2015). Flow regime identification andvoid fraction prediction in two-phase flows based on gamma ray attenuation. Measurement, 62, 25-32. https://doi.org/10.1016/j.measurement.2014.11.006
  • [29] Salgado, C. M., Pereira, C., Schirru, R., & Brandão, L. E. B. (2010). Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Progress in Nuclear Energy, 52(5), 555-562. https://doi.org/10.1016/j.pnucene.2010.02.001
  • [30] Roshani, G. H., Nazemi, E., & Roshani, M. M. (2017). Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using Radial Basis Function. Flow Measurement Instrumentation, 54, 39-45. https://doi.org/10.1016/j.flowmeasinst.2016.10.001
  • [31] Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Setayeshi, S., Zadeh, E. E., & Fatehi, A. (2016). Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. International Journal of Hydrogen Energy, 41(18), 7438-7444. https://doi.org/10.1016/j.ijhydene.2015.12.098
  • [32] Zhao, Y., Qincheng, B., & Richa, H. (2013). Recognition and measurement in the flow pattern and void fraction of gase liquid two-phase flow in vertical upward pipes using the gamma densitometer. Applied Thermal Engineering, 60, 398-410. https://doi.org/10.1016/j.applthermaleng.2013.07.006
  • [33] Roshani, G. H., Nazemi, E., Shama, F., Imani, M. A., & Mohammadi, S. (2018). Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrology and Measurement Systems, 25(2), 347-358. http://doi.org/10.24425/119560
  • [34] Khorsandi, M., Feghhi, S. A. H., Salehizadeh, A., & Roshani, G. H. (2013). Developing a gamma ray fluid densitometer in petroleum products monitoring applications using Artificial Neural Network. Radiation measurements, 59, 183-187. https://doi.org/10.1016/j.radmeas.2013.06.007
  • [35] Shanthi, C., & Pappa, N. (2017). An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images. ISA Transactions, 68, 425-432. https://doi.org/10.1016/j.isatra.2016.10.021
  • [36] Hanus, R., Zych, M., Kusy, M., Jaszczur, M., & Petryka, L. (2018). Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Measurement Instrumentation, 60, 17-23. https://doi.org/10.1016/j.flowmeasinst.2018.02.008
  • [37] Hanus, R., Zych, M., Petryka, L., Jaszczur, M., & Hanus, P. (2016). Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 1: time domain. EPJ Web of Conferences, 114, 02035. https://doi.org/10.1051/epjconf/201611402036
  • [38] Hanus, R., Zych, M., Petryka, L., Świsulski, D., & Strzępowicz, A. (2017). Application of ANN and PCA to two-phase flow evaluation using radioisotopes. EPJ Web of Conferences, 143, 02033. https://doi.org/10.1051/epjconf/201714302033
  • [39] Larose, D. T. (2005). Discovering knowledge in data: an introduction to data mining. John Wiley & Sons. https://doi.org/10.1002/0471687545
  • [40] Larose, D. T. (2006). Data mining methods and models. John Wiley & Sons. https://doi.org/10.1002/0471756482
Uwagi
1. This work was supported by Rzeszów University of Technology under project UPB.EM.20.001 and by the Polish Ministry of Science and Higher Education under the program “Regional Initiative of Excellence” in 2019-2022, project number 027/RID/2018/19, funding amount 11 999 900 PLN.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526b2d06-1401-4fa4-b799-5074ba337c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.