PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An artifical neural network usage in measurement of exhaust gas emission from marine engines: case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the case study of use the artificial neural network to predict the main propulsion marine engine load. Mentioned load of the engine is important parameter to assess the emission level of toxic compounds into the atmosphere according to ISO standard and MARPOL convention. The engine load depends on the ship speed, rotational speed of the engine, propeller blades settings, the direction and the speed of wind, the condition of sea and the direction and the speed of sea currents and construction parameters of the ship. The realization of the aim of the work requires the direct measurement of presented parameters and measurement of exhaust gas composition. The experiment was carried out onboard STS “Pogoria”. Obtained results are enough to use the ANN to predict engine load to measure the emission level of toxic compounds.
Rocznik
Strony
87--93
Opis fizyczny
Bibliogr. 20 poz., wykr., tab.
Twórcy
autor
  • Gdynia Maritime University Department of Engineering Sciences Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 6901434, fax: +48 58 6901399
autor
  • Gdynia Maritime University Department of Engineering Sciences Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 6901451, fax: +48 58 6901399
Bibliografia
  • [1] Oladsine M., Bloch G., Dovifaaz X., Neural modelling and control of a diesel engine with pollution constrains, J. Intel. Robotic Systems, Vol. 41, Kluwer Academic Publishers, 2004,
  • [2] Hafner M., Schuler M., Nelles O., Isermann R., Fast neural networks for diesel engine control design, Control Engineering Practice, Vol. 8, Pergamon 2000.
  • [3] Stephan V., Debes K., Gross H-M., Wintrich F. Wintrich H., A new control scheme for combustion processes using reinforcement learning based on neural networks, Int. J. Comput. Intel. Appl. Vol. 1, No 2, Imperial College Press, 2001.
  • [4] Yang H., Ring Z., Briker Y., McLean N., Friesen W., Fairbridge C., Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC-MS, Fuel Vol. 81, Elsevier, 2002.
  • [5] Ramadhas A. S., Jayaraj S., Muraleedharan C., Padmakumari K., Artificial neural networks used for the prediction of the cetane number of biodiesel, Renewable Energy Vol. 31, Elsevier, 2006.
  • [6] Lee S. H., Howlett R. J., Crua C., Walters S. D., Fuzzy logic and neuro-fuzzy modelling of diesel spray penetration: A comparative study, J. Intel. Fuz. Sys. Vol. 18, IOS Press, 2007.
  • [7] Sayin C., Ertunc H. M., Hosoz M., Kilicaslan I., Canakci M., Performance and exhaust emissions of a gasoline engine using artificial neural network, Applied Thermal Engineering Vol. 27, Elsevier, 2007,
  • [8] Al-Hinti I., Samhouri M., Al-Ghandoor A., Sakhrieh A., The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach, Applied Energy Vol. 86, Elsevier, 2009.
  • [9] Parlak A., Islamoglu Y., Yasar H., Egrisogut A., Application of artificial neural network to predict fuel consumption and temperature for a diesel engine, Applied Thermal Engineering Vol. 26, Elsevier, 2006.
  • [10] Wang S., D.L. Yu., Adaptive RBF network for parameter estimation and stable air–fuel ratio control, Neural Networks Vol. 21, Elsevier, 2008.
  • [11] Kowalski J., ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine, Polish Maritime Research, No 2(60), Vol. 16, pp. 60 – 66, Gdańsk 2009.
  • [12] Wu J-D., Liu C-H., An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network, Expert Systems with Applications Vol. 36, Elsevier, 2009.
  • [13] Kowalski J., Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines, Applied Energy, Vol. 150, pp. 1-8, Elsevier 2015.
  • [14] Ming Zheng, Reader G.T., Hawley J.G., Diesel engine exhaust gas recirculation–a review on advanced and novel concepts, Energy Conversion and Management, Vol. 45, pp. 883 – 900, Elsevier, 2004.
  • [15] Kowalski J., Wpływ wybranych niesprawności układu paliwowego na skład emitowanych spalin z czterosuwowego silnika okrętowego, Zeszyty Naukowe AMW w Gdyni, Vol. 178A pp. 133 – 138, Gdynia 2009.
  • [16] Kowalski J., Wpływ wybranych niesprawności układu doładowania na skład emitowanych spalin z czterosuwowego silnika okrętowego, Zeszyty Naukowe AMW w Gdyni, Vol. 178A, pp. 139 – 144, Gdynia 2009.
  • [17] Sarvi A, Fogelholm C-J, Zevenhoven R., Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode, Fuel Process Technol, Vol. 89, No. 5, pp. 520 – 527, Elsevier, 2007.
  • [18] Technical code on control of emission of nitrogen oxides from marine diesel engines, International Maritime Organisation, Resolution MEPC.251.(66), 2008.
  • [19] Rudzki K.: Dwukryterialna optymalizacja nastaw silnikowego układu napędowego statku ze śrubą nastawną z wykorzystaniem sztucznych sieci neuronowych. Rozprawa doktorska, Akademia Morska w Gdyni, Gdynia 2014.
  • [20] Rudzki K., Tarełko W.: Optymalizacja nastaw układu napędowego statku ze śrubą nastawną, 2014, Logistyka, Zeszyt 6, pp. 1103-1108.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526afde8-6fef-4f32-90a1-0e00045097d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.