PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Indicators Of Burnished Surface Evaluation – Reasons Of Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern production technology requires new ways of surface examination and a special kind of surface profile parameters. Industrial quality inspection needs to be fast, reliable and inexpensive. In this paper it is shown how stochastic surface examination and its proper parameters could be a solution for many industrial problems not necessarily related with smoothing out a manufactured surface. Burnishing is a modern technology widely used in aircraft and automotive industries to the products as well as to process tools. It gives to the machined surface high smoothness, and good fatigue and wear resistance. Every burnished material behaves in a different manner. Process conditions strongly influence the final properties of any specific product. Optimum burnishing conditions should be preserved for any manufactured product. In this paper we deal with samples made of conventional tool steel – Sverker 21 (X153CrMoV12) and powder metallurgy (P/M) tool steel – Vanadis 6. Complete investigations of product properties are impossible to perform (because of constraints related to their cost, time, or lack of suitable equipment). Looking for a global, all-embracing quality indicator it was found that the correlation function and the frequency analysis of burnished surface give useful information for controlling the manufacturing process and evaluating the product quality. We propose three new indicators of burnishing surface quality. Their properties and usefulness are verified with the laboratory measurement of material samples made of the two mentioned kinds of tool steel.
Rocznik
Strony
263--274
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Advanced Manufacturing Technology (IAMT), Wrocławska 37a, 30-011 Cracow, Poland
autor
  • Institute of Advanced Manufacturing Technology (IAMT), Wrocławska 37a, 30-011 Cracow, Poland
  • Institute of Advanced Manufacturing Technology (IAMT), Wrocławska 37a, 30-011 Cracow, Poland
autor
  • Institute of Advanced Manufacturing Technology (IAMT), Wrocławska 37a, 30-011 Cracow, Poland
autor
  • AGH University of Science and Technology, Department of Measurement and Electronics, Al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • [1] ISO 4287:1999 Geometrical Product Specifications (GPS) - Surface Texture: Profile Method. Terms, Definitions And Surface Texture Parameters.
  • [2] ISO 13565-2:1999 Geometrical product specifications (GPS) - Surface texture: Profile method; surfaces having stratified functional properties - Part 2: Height characterization using the linear material ratio curve.
  • [3] ISO/DIS 25178-2 Geometrical product specifications (GPS) - Surface texture: Areal. Part 2: Terms, definitions and surface texture parameters, 2011.
  • [4] Whitehouse, J.D. (1994). Handbook of Surface Metrology. Institute of Physics Publishing, Bristol.
  • [5] Boryczko, A. (2010). Distribution of roughness and waviness components of turned surface profiles. Metrol. Meas. Syst., 17(4), 611-620.
  • [6] Boryczko, A. (2011). Profile irregularities of turned surface as a result of machine tool interactions. Metrol. Meas. Syst., 18(4), 691-700.
  • [7] Boryczko, A., Rytlewski, W. (2014). Surface irregularities as a complex signal of tool representation together with uneven displacement in respect to the workpiece. Metrol. Meas. Syst., 21(1), 133-144.
  • [8] Thomas, T.R. (1999). Rough Surfaces. World Scientific Publishing Company, 2 Sub. ed.
  • [9] Salazar, F., Belenguer, T., García, J., Ramos, G. (2012). On roughness measurement by angular speckle correlation. Metrol. Meas. Syst., 19(2), 373-380.
  • [10] Bednarski, P., Biało, D., Brostow, W., Czechowski, K., Polowski, W., Rusek, P., Toboła, D. (2013). Improvement of Tribological Properties of Metal Matrix Composite by Means of Slide Burnishing. Materials Science (Medžiagotyra), 19(4), 367-372.
  • [11] Rodríguez, A., López de Lacalle, L.N. (2012). Surface improvement of shaft by the beep ball-burnishing technique. Surface & Coatings Technology, 206, 2817-2824.
  • [12] Przybylski, W., Wojciechowski, J., Klaus, A., Marré, M., Kleiner, M. (2008). Manufacturing of resistant joint by rolling for light tubular structures. Int. J. Adv. Manuf. Technol., (35), 924-934.
  • [13] Grzesik, W., Żak, K. (2012). Modification of surface finish produced by hard turning using superfinishing and burnishing operations. J. Mater. Proc. Tech., 212, 315-322.
  • [14] Korzyński, M., Lubas, J., Świrad, S., Dudek, K. (2011). Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J. Mater. Proc. Tech., 211, 84-94.
  • [15] Adamczak, S., Makieła, W., Stępień K. (2010). Investigating advantages and disadvantages of the analysis of a geometrical surface structure with the use of Fourier and Wavelet Transform. Metrol. Meas. Syst., 17(2), 233-244.
  • [16] www.ios.krakow.pl
  • [17] Korzyński, M. (2007). Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool. Intern. J. Machine Tools & Manufact., 47, 1956-1964.
  • [18] Patyk, R., Kukielka, L. (2008). Optimization of geometrical parameters of regular triangular asperities of surfaces put to smooth burnishing, Conference: 12th International Conference on Metal Forming Location: Cracow, Poland 21-24 Sept., 2008. Steel Research International, 642-647.
  • [19] Kukielka, L. (2001). Mathematical modelling and numerical simulation of non-linear deformation of the asperity in the burnishing cold rolling operation, Dominguez, J., Brebbia, C.A, (eds), 5th International Conference on Computational Methods in Contact Mechanics Location: Seville, Spain. Computational Methods in Contact Mechanics V Book Series: Computational And Experimental Methods, 5, 317-326.
  • [20] Brostow, W., Czechowski, K., Polowski, W., Rusek, P., Toboła, D., Wronska, I. (2013). Slide diamond burnishing of tool steel with adhesive coatings and diffusion layers. Materials Research Innovations, 4(17), 269-277.
  • [21] Oppenheim, A.V., Schafer, R.W., Buck, J.R. (1999). Discrete-Time Signal Processing. 2nd ed., Prentice-Hall.
  • [22] Harris, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 51–83.
  • [23] Kikuchi, S., Komotori, J. (2008). Effect of Fine Peening Treatment prior to Nitriding on Fatique Properties of AISI 4135 Steel. J. Solid Mech. Mater. Eng., 2(11), 1444–1450.
  • [24] Wróblewski, G., Skalski, K. (2006). Properties of surface layer generated by new combined process of burnishing and nitriding. Surface Engineering, 22(2), 138–146.
  • [25] Radziejewska, J., Skrzypek, S.J. (2009). Micostructure and residual stresses in surface layer of simultaneously laser alloyed and burnished steel. J. Mater. Proc. Tech., 209, 2047–2056.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526a58ce-4648-4a53-b487-e3131bd3d912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.