Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Raw materials such as feldspar, kaolin and illitic clay are used in the preparation of ceramic porcelain tile compositions according to their specific properties. Such raw materials are ground in ball mills in order to reduce the particle size to a certain value determined according to the operating conditions. In this study, it was aimed to compare capacity, time and energy spent in the grinding process of porcelain tile composition by using alumina and silica grinding medium from an industrial perspective. In this context, firstly, the grinding properties of the raw materials were determined with porcelain ball mill and Bond mill, separately. Bond Work Index values of magnesite, clay, kaolin and feldspar were determined as 8.7, 7.9, 12.3 and 14.2 kWh/ton, respectively. Then industrial grinding of a porcelain body was executed with a discontinuous horizontal ball mill. The industrial grinding studies showed that porcelain body was ground at 480 and 720 min to reach 2% sieve residue for +45 μm with alumina and silica ball, respectively, which resulted as 625 ton/h capacity difference. Lastly, the ground materials in alumina and silica medium were compared in terms of water absorption, shrinkage, color and SEM analysis after sintering in porcelain tile conditions.
Czasopismo
Rocznik
Tom
Strony
155--167
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Mining and Extraction, Çan Vocational School, Çanakkale Onsekiz Mart University
Bibliografia
- ABDELHAFFEZ G.S., AHMED A.A., and AHMED H.M., 2022, Effect of Grinding Media on the Milling Efficiency of a Ball Mill, Rudarsko-geološko-naftni Zbornik, 37 (2), 171–177, https://doi.org/ 10.17794/rgn.2022.2.14
- AMANNEJAD M., BARANI K., 2020, Effects of ball size distribution and mill speed and their interactions on ball milling using DEM, Mineral Processing and Extractive Metallurgy Review, 42 (6), 1–6, https://doi.org/10.1080/08827508.2020.1781630
- BAZIN C., LAVOIE G., 2000, Ball mill rotation speed and rate of particle breakage: application to a full scale unit, Trans. Inst. Min. Metall. Sect-C, 109, 161–164. https://doi.org/10.1179/mpm. 2000.109.3.161
- BENKLI Y.E., KOCA K., 2024, Suitability and characterization of pumice, bauxite, and ferrochrome slag as alternative raw materials in vitrified ceramic industry. Physicochemical Problems of Mineral Processing, 60 (2), 187967, https://doi.org/10.37190/ppmp/187967
- CLEARY P.W., MORRISON R.D., and SINNOTT M.D., 2020, Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model, Minerals Engineering, 159, 106614, https://doi.org/10.1016/j.mineng.2020.106614
- DAN A., KOTAMARTHY L., RAMACHANDRAN R., 2022, Understanding the effects of process parameters and material properties on the breakage mechanisms and regimes of a milling process. Chemical Engineering Research and Design, 188, 607–619, https://doi.org/10.1016/j.cherd.2022.10.015
- FANG X., WU C., LİAO N., ZHONG J., DUAN X., ZHU S., LİU A., and XİAO K., 2024, Investigating the influence of medium size and ratio on grinding characteristics, Minerals, 14 (9), 875, https://doi.org/ 10.3390/min14090875
- GARCÍA-TEN F.J., VÁZQUEZ M.F.Q., ALBALAT C.G., VILLALBA D.C., ZAERA V., and MESTRE M.C.S., 2015, Life Ceram – Zero waste in ceramic tile manufacture, Key Engineering Materials, 663, 23–33, https://doi.org/10.4028/www.scientific.net/kem.663.23
- GENÇ Ö. and BENZER A.H., 2019, Effect of Mill Feed Size Distribution and Grinding Media Size on Size Reduction Performance of an Industrial Scale Vibrating Ball Mill (Vbm) in Cement Clinker Grinding, Scientific Mining Journal, 58 (4), 267–274, https://doi.org/10.30797/madencilik.666403
- GHORRA G., 2008, Wet vs. Dry Processing: Granulation of Ceramic Powders. In: Ceramic Engineering and Science Proceedings, pp. 1211–1219, https://doi.org/10.1002/9780470310458.ch12
- HOGG R. and CHO H., 2000, A review of breakage behavior in fine grinding by Stirred-Media Milling, KONA Powder and Particle Journal, 18 (0), 9–19, https://doi.org/10.14356/kona.2000007
- IWASAKI T., YAMANOUCHI H., 2020, Ball-impact energy analysis of wet tumbling mill using a modified discrete element method considering the velocity dependence of friction coefficient, Chemical Engineering Research and Design, 163, 241–247, https://doi.org/10.1016/j.cherd.2020.09.005
- KOÇAK A., KARASU B., 2019, Differences between dry and wet route tile production, El-Cezerî Journal of Science and Engineering, 6 (1), 8–23, https://doi.org/10.31202/ecjse.443880
- KUMAR A., SAHU R., and TRIPATHY S.K., 2023, Energy-Efficient Advanced ultrafine grinding of particles using Stirred Mills – A review, Energies, 16 (14), 5277, https://doi.org/10.3390/ en16145277
- LYU F., THOMAS M., HENDRIKS W., and VAN DER POEL A., 2019, Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review, Animal Feed Science and Technology, 261, 114347, https://doi.org/10.1016/j.anifeedsci.2019.114347
- MATSANGA N., NHETA W., CHIMWAN N., 2023, A Review of the Grinding Media in Ball Mills for Mineral Processing, Minerals, 13 (11), 1373, https://doi.org/10.3390/min13111373
- MEZQUITA A., MONFORT E., FERRER S., and GABALDÓN-ESTEVAN D., 2017, How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: Dry versus wet route, Journal of Cleaner Production, 168, 1566–1570, https://doi.org/10.1016/j.jclepro.2017.04.082
- NIALL S., EVITT T.S., Compositions for ceramic tiles, United States Patent, Patent No. 6,127,298, October 3, 2000. https://patentimages.storage.googleapis.com/56/8b/a4/62bc90ddf24fbf/US6127298.pdf.
- PETRAKIS E., XIROUDAKIS G., SAMOUHOS M., and GAMALETSOS P.N., 2025, Modeling development for the prediction of the particle size distribution and energy consumption of the crushing Products: A first approach, Minerals Engineering, 233, 109669, https://doi.org/10.1016/j.mineng.2025.109669
- SACMI 2002, Applied Ceramic Technology, Vol. 1–2, Editrice La Mondragora S.R.L., Imola, Italy.
- SIEBEN P.G., WYPYCH F., FREITAS R.A., 2022, Pickering emulsions based on layered clay minerals with neutral structures, scrolls, and nanotubes morphologies, Developments in Clay Science, ISSN: 1572-4352, 10, 229–252, https://doi.org/10.1016/b978-0-323-91858-9.00003-3
- STAPLES L.W., 1964, Friedrich Mohs and the Scale of Hardness, Journal of Geological Education, 12 (3), 98–101, https://doi.org/10.5408/0022-1368-12.3.98
- TAO Z., YAOYAO S., LAAKSO S., JINMING Z., 2017, Investigation of the Effect of Grinding Parameters on Surface Quality in Grinding of TC4 Titanium Alloy, Procedia Manufacturing, 11, 2131–2138, https://doi.org/10.1016/j.promfg.2017.07.344
- TONG J., WU C., WANG Y., TIAN J., LI Z., XIE F., YAO X., ZENG G., 2023, Effect on fine particles output characteristics of ceramic ball grinding, Minerals, 13 (11), 1416.
- XU W., LI C., XU P., WANG W., ZHANG Y., YANG M., CUI X., LI B., LIU M., GAO T., DAMBATTA Y.S., and QIN A., 2025, Grinding mechanics of ceramics: from mechanism to modeling, Advances in Manufacturing, https://doi.org/10.1007/s40436-025-00553-0
- YANG B., LU S., LI C., FANG C., WAN Y., and LIN Y., 2024, Reducing water absorption and improving flexural strength of aluminosilicate ceramics by MNO2 Doping, Materials, 17 (11), 2557, https://doi.org/10.3390/ma17112557
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5268d60e-cca5-42f0-a43a-d7089b5a285f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.