PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermogravimetric and Kinetic Analysis of Raw and Torrefied Biomass Combustion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of torrefied biomass as a substitute for untreated biomass may decrease some technological barriers that exist in biomass co-firing technologies e.g. low grindability, high moisture content, low energy density and hydrophilic nature of raw biomass. In this study the TG-MS-FTIR analysis and kinetic analysis of willow (Salix viminalis L.) and samples torrefied at 200, 220, 240, 260, 280 and 300 oC (TSWE 200, 220, 240, 260, 280 and 300), were performed. The TG-DTG curves show that in the case of willow and torrefied samples TSWE 200, 220, 240 and 260 there are pyrolysis and combustion stages, while in the case of TSWE 280 and 300 samples the peak associated with the pyrolysis process is negligible, in contrast to the peak associated with the combustion process. Analysis of the TG-MS results shows m/z signals of 18, 28, 29 and 44, which probably represent H2O, CO and CO2. The gaseous products were generated in two distinct ranges of temperature. H2O, CO and CO2 were produced in the 500 K to 650 K range with maximum yields at approximately 600 K. In the second range of temperature, 650 K to 800 K, only CO2 was produced with maximum yields at approximately 710 K as a main product of combustion process. Analysis of the FTIR shows that the main gaseous products of the combustion process were H2O, CO2, CO and some organics including bonds: C=O (acids, aldehydes and ketones), C=C (alkenes, aromatics), C-O-C (ethers) and C-OH. Lignin mainly contributes hydrocarbons (3000–2800 cm−1), while cellulose is the dominant origin of aldehydes (2860–2770 cm−1) and carboxylic acids (1790–1650 cm−1). Hydrocarbons, aldehydes, ketones and various acids were also generated from hemicellulose (1790–1650 cm−1). In the kinetic analysis, the two-steps first order model (F1F1) was assumed. Activation energy (Ea) values for the first stage (pyrolysis) increased with increasing torrefaction temperature from 93 to 133 kJ/mol, while for the second stage (combustion) it decreased from 146 to 109 kJ/mol for raw willow, as well as torrefied willow at the temperature range of 200-260°C. In the case of samples torrefied at 280 and 300°C, the Ea values of the first and second stage were comparable to Ea of untreated willow and torrefied at 200°C. It was also found that samples torrefied at a higher temperature, had a higher ignition point and also a shorter burning time.
Rocznik
Strony
209--223
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
Bibliografia
  • 1. Ahamed T., Alshehri S.M., 2012. TG–FTIR–MS (Evolved Gas Analysis) of bidi tobacco powder during combustion and pyrolysis. J. Hazard. Mater., 200, 199-200. DOI: 10.1016/j.jhazmat.2011.10.090.
  • 2. Bergman P.C.A., 2005. Combined torrefaction and pelletisation - The TOP process. ECN publication, Report ECN-C-05-073, available at: www.ecn.nl.
  • 3. Bioenergy, 2000. A new process for Torrefied wood manufacturing. General bioenergy. 2 (4).
  • 4. Branca C., Iannace A., Di Blasi C., 2007. Devolatilization and combustion kinetics of Quercus cerris bark. Energy Fuels, 21, 1078-84. DOI: 10.1021/ef060537j.
  • 5. Bridgeman T. G., Jones J. M., Shield I., Williams P. T., 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87, 844–856. DOI: 10.1016/j.fuel.2007.05.041.
  • 6. Caballero J.A., Conesa J.A., Font R., Marcilla A., 1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J. Anal. Appl. Pyrolysis, 42, 159-175. DOI: 10.1016/S0165-2370(97)00015-6.
  • 7. Chen Y., Duan J., Luo Y.H., 2008. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions. J. Anal. Appl. Pyrolysis, 83, 165-174. DOI: 10.1016/j.jaap.2008.07.008.
  • 8. Ciolkosz D., Wallace, R., 2011. A review of torrefaction for bioenergy feedstock production. Biofuels, Bioprod. Bioref., 5, 317–329. DOI: 10.1002/bbb.275.
  • 9. Conesa J.A., Marcilla A., Caballero J.A., 1997. Evolution of gases from the pyrolysis of modified almond shells: effect of impregnation with CoCl2. J. Anal. Appl. Pyrolysis, 43, 59-69. DOI: 10.1016/S0165-2370(97)00053-3.
  • 10. Conesa JA, Domene A., 2011. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim. Acta, 523, 176-181. DOI: 10.1016/j.tca.2011.05.021.
  • 11. Fang M.X., Shen D.K., Li Y.X., Yu C.J., Luo Z.Y., Cen K.F., 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrolysis, 77, 22-27. DOI: 10.1016/j.jaap.2005.12.010.
  • 12. Font R., Conesa J.A., Moltó J., Muñoz M., 2009. Kinetics of pyrolysis and combustion of pine needles and cones. J. Anal. Appl. Pyrolysis, 85, 276-286. DOI: 10.1016/j.jaap.2008.11.015.
  • 13. Gao N., Li A., Quan C., Du L., Duan Y., 2013. TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrolysis, 100, 26-32. DOI: 10.1016/j.jaap.2012.11.009.
  • 14. Green Paper, 2013. A 2030 framework for climate and energy policies. COM(2013) 169 final. Brussels, 27.3.2013. EUROPEAN COMMISSION, available at: http://cor.europa.eu/en/activities/stakeholders/Documents/comm169-2013final.pdf
  • 15. Jauhiainen J., Conesa J.A., Font R., Martı́n-Gullón I., 2004. Kinetics of the pyrolysis and combustion of olive oil solid waste. J. Anal. Appl. Pyrolysis, 72, 9-15. DOI: 10.1016/j.jaap.2004.01.003.
  • 16. Koppejan J., Sokhansanj S., Melin S., Madrali S., 2012. Status overview of torrefaction technologies. IEA Bioenergy Task 32 report.
  • 17. Kopczyński M., Zuwała J., 2012. Biomasa toryfikowana – nowe paliwo dla energetyki, Chemik, 6, 540-551.
  • 18. Kopczyński M., Zuwała J., 2013. Biomass torrefaction as a way for elimination of technical barriers existing in large-scale co-combustion. Polityka Energetyczna, 16, 271-284 (in Polish).
  • 19. Lee S-B., Fasina O., 2009. TG-FTIR analysis of switchgrass pyrolysis. J. Anal. Appl. Pyrolysis. 86, 39-DOI: 10.1016/j.jaap.2009.04.002.
  • 20. Li S., Lyons-Hart J., Banyasz J., Shafer K., 2001. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis. Fuel, 80, 1809-1817. DOI: 10.1016/S0016-2361(01)00064-3.
  • 21. López-González D., Fernandez-Lopez M., Valverde J.L., Sanchez-Silva L., 2014. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Appl. Energy, 114, 227-237. DOI: 10.1016/j.apenergy.2013.09.055.
  • 22. Marquardt D., 1963, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11 (2), 431-41.
  • 23. Mroczek K., 2009. Analysis of coal mill operation at co-milling of wood biomass. Chem. Process Eng., 30, 83-98.
  • 24. Muzyka R., Topolnicka T., Jarosz P., 2011. Oznaczenie zawartości azotu, węgla, wodoru i siarki automatycznym analizatorem VarioMacroCube, Laboratory procedure nr Q/LG/15A (in Polish).
  • 25. Muzyka R., Topolnicka T., Jarosz P., 2011. Oznaczenie zawartości tlenu automatycznym analizatorem VarioMacroCube, Laboratory procedure nr Q/LG/16A (in Polish).
  • 26. Pentananunt R., Rahman A.N.M.M., Bhattacharya S.C., 1990. Upgrading of biomass by means of torrefaction. Energy, 15, 1175–1179. DOI: 10.1016/0360-5442(90)90109-F.
  • 27. Phanphanich M., Mani S., 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol., 102, 1246–1253. DOI: 10.1016/j.biortech.2010.08.028.
  • 28. PN-G-04516: 1998. Paliwa stałe – oznaczanie zawartości części lotnych metodą wagową (in Polish).
  • 29. PN-G-04512: 1980. Paliwa stałe – oznaczanie zawartości popiołu metodą wagową (in Polish).
  • 30. Ren S., Lei H., Wang L., Bu Q., Chen S., Wu J., 2013. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Eng,, 116, 420-426. DOI: 10.1016/j.biosystemseng.2013.10.003.
  • 31. Ściążko M., Zuwała J., Pronobis M., 2006. Zalety i wady współspalania biomasy w kotłach energetycznych na tle doświadczeń eksploatacyjnych pierwszego roku współspalania biomasy na skalę przemysłową. Energetyka, 3, 207-220.
  • 32. Senneca O., Chirone R., Salatino P., Nappi L., 2007. Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions. J. Anal. Appl. Pyrolysis, 79, 227-233. DOI: 10.1016/j.jaap.2006.12.011.
  • 33. Senneca O., Chirone R., Salatino P., 2002. A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy Fuels, 16, 661-8. DOI: 10.1021/ef0102061.
  • 34. URE, 2013 – Biuletyn Urzędu Regulacji Energetyki, http://www.ure.gov.pl.
  • 35. Uslu A., Faaij A., Bergman P., 2008. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33, 1206–1223. DOI: 10.1016/j.energy.2008.03.007.
  • 36. Wang S., Jiang X.M., Han X.X., Liu J.G., 2009. Combustion characteristics of seaweed biomass. 1. Combustion characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels, 23, 5173-8. DOI: 10.1021/ef900414x.
  • 37. Wang Q., Zhao W., Liu H., Jia C., Xu H., 2012. Reactivity and kinetic analysis of biomass during combustion. Energy Procedia, 17, 869–875. DOI: 10.1016/j.egypro.2012.02.181.
  • 38. Wannapeera J., Fungtammasan B., Worasuwannarak N., 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrolysis, 92, 99–105. DOI: 10.1016/j.jaap.2011.04.010.
  • 39. Yang, H., Yan, R., Chin, T., Liang, D. T., Chen, H., & Zheng, C., 2004. Thermogravimetric analysis−Fourier Transform Infrared Analysis of palm oil waste pyrolysis. Energy Fuels, 18, 1814-1821. DOI: 10.1021/ef030193m.
  • 40. Yang C. Y., Lu X. S., Lin W. G., Yang X. M., Yao J. Z., 2006. TG-FTIR Study on corn straw pyrolysis-influence of minerals. Chem. Res. Chin. Univ., 22 (4), 524-532.
  • 41. Yang H., Yan R., Chen H., Ho Lee D., Zheng C., 2007, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5267b986-53cd-42e9-9b2b-730eb1b46911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.