PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of concavities on the ends of parts manufactured on CNC skew rolling mills

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the problem of concavity formation on the ends of parts manufactured on CNC skew rolling mills. Numerical modeling and Taguchi method were used to determine the effects of the main parameters of skew rolling (i.e., forming angle, skew angle, reduction ratio, temperature, steel grade, dimeter ratio, velocity ratio) on the depth of concavities formed on the product ends. The simulations showed that the only parameter to have a significant impact on the concavity depth was the reduction ratio. The FEM results were then used to establish equations for calculating concavity depth and allowance for excess material with concavity. For more universality, the established equations took into account the billet diameter. The experimental validation showed high agreement between the numerical and the experimental concavity depths.
Rocznik
Strony
art. no. e8, 2025
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, People’s Republic of China
  • Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, People’s Republic of China
Bibliografia
  • 1. Xu Y, Zhang Y, Zhuang X, Cao Z, Lu Y, Zhao Z. Numerical modeling and anvil design of high-speed forging process for railway axles. Int J Mater Form. 2021;14:813–32. https://doi.org/10.1007/s12289-020-01590-9.
  • 2. Romanenko VP, Stepanov PP, Kriskovich SM. Production of hollow railroad axles by screw piercing and radial forging. Metallurgist. 2018;61(9–10):873–7. https:// doi. org/ 10. 1007/s11015-018-0579-0.
  • 3. Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skewrolling process for rail axles. Arch Metall Mater. 2015;60(1):415–8. https://doi.org/10.1515/amm-2015-0068.
  • 4. Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skewrolling process for main shaft. Metalurgija. 2015;54(4):627–30.
  • 5. Pater Z. FEM analysis of loads and torque in skew rolling process for producing axisymmetric parts. Arch Metall Mater.2017;62(1):85–90. https://doi.org/10.1515/amm-2017-0011.
  • 6. Xu C, Shu XD. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija.2018;57(3):153–6.
  • 7. Zhang S, Shu XD, Xia YX, Wang JT. Formation mechanism and control of the spiral marks of three-roll skew-rolled hollow axles. Metalurgija. 2021;60(1–2):51–4.
  • 8. Pater Z, Walczuk-Gągała P. Conception of hollow axles forming by skew rolling with moving mandrel. Adv Sci Technol Res J.2021;15(3):146–54. https://doi.org/10.12913/22998624/139134.
  • 9. Zhang H, Wang B, Lin L, Feng P, Zhou J, Shen J. Numerical analysis and experimental trial of axial feed skew rolling for forming bars. Arch Civ Mech Eng. 2022;22:17. https://doi.org/10.1007/s43452-021-00334-z.
  • 10. Tomczak J, Pater Z, Bulzak T, Lis K, Kusiak T, Sumorek A,Buczaj M. Design and technological capabilities of a CNC skewrolling mill. Arch Civ Mech Eng. 2021;21:72. https://doi.org/10.1007/s43452-021-00205-7.
  • 11. Pater Z, Tomczak J, Lis K, Bulzak T, Shu X. Forming of railcar axles in a CNC skew rolling mill. Arch Civ Mech Eng.2020;20:69. https://doi.org/10.1007/s43452-020-00075-5.
  • 12. Pater Z. A comparative analysis of forming railway axles in 3- and4-roll rolling mills. Materials. 2020;13:3084. https://doi.org/10.3390/ma13143084.
  • 13. Cao X, Wang B, Zhou J, Shen J, Lin L. Exploratory experiment and numerical simulation investigation on a novel flexible skew rolling of hollow shafts. Int J Adv Manuf Technol. 2021;116:3391–403.https://doi.org/10.1007/s00170-021-07360-4.
  • 14. Bartnicki J, Xia Y, Shu X. The chosen aspects of skew rolling of hollow stepped shafts. Materials. 2021;14:764. https://doi.org/10.3390/ma14040764.
  • 15. Pater Z, Tomczak J, Bulzak T, Walczuk-Gągała P. Numerical and experimental study on forming preforms in a CNC skew rollingmill. Arch Civ Mech Eng. 2022;22:54. https://doi.org/10.1007/s43452-022-00373-0.
  • 16. Wang JT, Shu XD, Zhang S. Effect of process parameters on average grain size and microscopic uniformity of the three-rollskew rolling forming of the railway hollow shaft. Metalurgija.2020;59:47–50.
  • 17. Wang J, Shu X, Zhang S, Li S, Pater Z, Xia Y, Bartnicki J. Research on microstructure evolution of three-roll skew rolling hollow axle. Int J Adv Manuf Technol. 2022;118:837–47. https://doi.org/10.1007/s00170-021-07991-7.
  • 18. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. Anew ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Tech.2021;291: 116989. https:// doi. org/ 10. 1016/j. jmatp rotec. 2020.116989.
  • 19. Pater Z, Tomczak J, Bulzak T, Wójcik Ł, Skripalenko MM. Prediction of ductile fracture in skew rolling processes. Int J MachTools Manuf. 2021;163: 103706. https://doi.org/10.1016/j.ijmachtools.2021.103706.
  • 20. Pater Z, Tomczak J, Bulzak T. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. J Mater Res Technol.2020;9(5):10434–46. https://doi.org/10.1016/j.jmrt.2020.07.062.
  • 21. Shu X, Wei X, Hhen L. Influence analysis of block wedge on rolled-piece end quality in cross wedge rolling. Appl Mech Mater.2012;101–102:1055–8. https://doi.org/10.4028/www.scientific.net/AMM.101-102.1055.
  • 22. Pater Z, Tomczak J, Bulzak T. New forming possibilities in crosswedge rolling processes. Arch Civ Mech Eng. 2018;18:149–61.https://doi.org/10.1016/j.acme.2017.06.005.
  • 23. Zeng J, Xu C, Ren W, Li P. Study on the deformation mechanism for forming shafts without concavity during the near-netforming cross wedge rolling process. Int J Adv Manuf Technol.2017;91:127–36. https://doi.org/10.1007/s00170-016-9742-6.
  • 24. Yang C, Zheng Z, Hu Z. Simulation and experimental study on the concavity of workpiece formed by cross wedge rolling without stub bar. Int J Adv Manuf Technol. 2018;95:707–17. https://doi.org/10.1007/s00170-017-1252-7.
  • 25. Han S, Shu X, Shu C. Study on near-net forming technology for stepped shaft by cross-wedge rolling based on variable cone anglebillets. Materials. 2018;11:1278. https://doi.org/10.3390/ma11081278.
  • 26. Sahoo AK, Tiwari MK, Mileham AR. Six sigma based approach to optimize radial forging operation variables. J Mater Process Tech. 2008;202:125–36. https:// doi. org/ 10. 1016/j. jmatp rotec.2007.08.085.
  • 27. Sanjari M, Karimi Taheri A, Movahedi MR. An optimization method for radial forging process using ANN and Taguchi method. Int J Adv Manuf Technol. 2009;40:776–84. https://doi.org/10.1007/s00170-008-1371-2.
  • 28. He X, Yu Z, Lai X. Robust parameters control methodology of microstructure for heavy forgings based on Taguchi method.Mater Des. 2009;30:2081–9. https://doi.org/10.1016/j.matdes.2008.08.039.
  • 29. Feng W, Hua L. Multi-objective optimization of process parameters for the helical gear precision forging by using Taguchi method. J Mech Sci Technol. 2011;25(6):1519–27. https://doi.org/10.1007/s12206-011-0430-z.
  • 30. Ullmann M, Saleh H, Schmitdchen M, Kawalla R, Vogt HP. Improvement of ductility for twin roll cast and rolled AZ31 stripsby use of Taguchi method. Arch Civ Mech Eng. 2013;13:1–6.https://doi.org/10.1016/j.acme.2012.09.001.
  • 31. Kacaturk F, Tanrikulu B, Dogan S, Kilicaslan C, Yurtdas S, Ince U. Optimization of trimming process in cold forging of steel bolts by Taguchi method. Int J Press Vessels Pip. 2021;194: 104503.https://doi.org/10.1016/j.ijpvp.2021.104503.
  • 32. Vaidya VA. Application of Taguchi for optimization of process parameters improving thickness variation in single stand cold rolling mill. Int Refer J Eng Sci. 2016;5(5):15–23.
  • 33. Bulzak T, Majerski K, Tomczak J, Pater Z, Wójcik Ł. Warm skewrolling of bearing steel balls using multiple impression tools. CIRP J Manuf Sci Technol. 2022;38:288–98. https://doi.org/10.1016/j.cirpj.2022.05.007.
  • 34. Tomczak J, Pater Z, Bulzak T. A helical rolling process for producing ball studs. Arch Civ Mech Eng. 2019;19:1316–26. https://doi.org/10.1016/j.acme.2019.07.008.
  • 35. Derazkola HA, Garcia E, Murillo-Marrodán A. Effects of skewrolling piercing process friction coefficient on tube twisting, strain rate and forming velocity. J Mater Process Tech. 2023;25:7254–72. https://doi.org/10.1016/j.jmrt.2023.07.167.
  • 36. Kruse J, Jagodzinski A, Langner J, et al. Investigation of the joining zone displacement of cross-wedge rolled serially arranged hybrid parts. Int J Mater Form. 2020;13:577–89. https://doi.org/10.1007/s12289-019-01494-3.
  • 37. Coors T, Pape F, Kruse J, et al. Simulation assisted process chain design for the manufacturing of bulk hybrid shafts with tailored properties. Int J Adv Manuf Technol. 2020;108:2409–17. https://doi.org/10.1007/s00170-020-05532-2.
  • 38. Bulzak T, Pater Z, Tomczak J, Wójcik Ł. A rotary compression test for determining the critical value of the Cockcroft-Latham criterion for R260 steel. Int J Damage Mech. 2020;29(6):874–86.https://doi.org/10.1177/1056789519887527.
  • 39. Murillo-Marodan A, Garcia E, Cortes F. A study of friction model performance in a skew rolling process numerical simulation. Int JSimul Model. 2018;17(4):569–82. https://doi.org/10.2507/IJSIMM17(4)441.
  • 40. Wang JC, Langlois L, Rafiq M, Bigot R, Lu H. Experimental &numerical study of the hot upsetting of weld cladded billets. KeyEng Mater. 2013;554–557:287–9. https://doi.org/10.4028/www.scientific.net/KEM.554-557.287.
  • 41. Gontarz A, Surdacki P, Michalczyk J. Research the dimensional accuracy of c45 steel ring forgings produced by radial rolling. Materials. 2024;17(1):3. https://doi.org/10.3390/ma17010003.
  • 42. FPD Base 1.3 Forming Properties Database (January 2014) Material database of forming properties (Transvalor SA, Sophia Antipolis, France). https://www.ita-tech.cz/en/products-and-services/mater ial-properties/database-of-metal-forming-properties/.Accessed 19 Apr 2024.
  • 43. Zhou X, Sun C, Wang B, Jiang J. Investigation and prediction of central cracking in cross wedge rolling. Int J Adv Manuf Technol.2022;123:145–59. https://doi.org/10.1007/s00170-022-10126-1.
  • 44. Yukawa N, Nakashima Y, Ishiguro T, Abe E, Ishikawa T, Choda T. Modeling of heat transfer coefficient of oxide scale in hot forging. Procedia Eng. 2014;81:492–7. https://doi.org/10.1016/j.proeng.2014.10.028.
  • 45. Jia Z, Wei B, Sun X. Study on the formation and prevention mechanism of internal voids in cross wedge rolling. Int J AdvManuf Technol. 2021;115:3579–87. https:// doi. org/ 10. 1007/s00170-021-07367-x.
  • 46. Jabłońska MB. Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review.Arch Civ Mech Eng. 2023;23:135. https:// doi. org/ 10. 1007/s43452-023-00656-0.
  • 47. Shen J, Wang B, Yang C, Zhou J, Cao X. Theoretical study and prediction of the inner hole reduction and critical mandrel diameter in cross wedge rolling of hollow shaft. J Mater Process Tech.2021;294: 117140. https:// doi. org/ 10. 1016/j. jmatp rotec. 2021.117140.
  • 48. Poloczek Ł, Rauch Ł, Wilkus M, Bachniak D, Zalecki W. Pidvysotsk’yy V, Kuziak R, Pietrzyk M. Physical and numerical simulations of closed die hot forging and heat treatment of forged parts. Materials. 2021;14(1):15. https://doi.org/10.3390/ma14010015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526734ad-329b-46de-b564-87fb332812da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.