PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the possibility of using photovoltaic sources for autonomous cultivation of negatively photoblastic plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cultivation of negatively photoblastic plants requires, first of all, the provision of a constant supply of electricity, without which it is impossible to cyclically implement the process of watering the plants. Due to the large amounts of heat generated by plants during their growth, cyclic watering is not only necessary to provide water for their growth, but also to cool them down. Lack of power supply and failure to water within a certain period of time leads to overheating of the plants and their destruction, thus necessitating the disposal of the production batch. Ensuring stable power supply and energy security of the cultivation is possible with the use of an island PV plant, but only integrated with an appropriately sized energy storage. This paper presents the results of an analysis of the feasibility of using PV sources to ensure continuous cultivation of Mung bean sprouts. Determination of the energy demand of the sprout-growing plant was made based on the developed transient simulation model of the production line. The level of energy demand was determined for different production scenarios. The availability of solar energy at the location of the production line was analyzed and the size of the PV system integrated with energy storage was determined. For full-scale production, regardless of the period of the year in which it is carried out, the maximum energy demand was determined based on simulation studies at 36 kWh/day. For full-scale production, the size of the PV system should be at 96.5 kWp, and the capacity of the energy storage should provide weekly coverage of the production line and be about 252 kWh.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Generała Jana Henryka Dąbrowskiego 69, Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Generała Jana Henryka Dąbrowskiego 69, Częstochowa, Poland
Bibliografia
  • 1. Communication from the European Commission of 14/07/2021 to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions “Ready for 55”: achieving the EU’s 2030 climate target on the way to climate neutrality; https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A52021DC0550 (Accessed: 10.07.2024).
  • 2. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. REPowerEU Plan; https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A52022DC0230 (Accessed: 08.06.2024).
  • 3. SolarPower Europe (2023): EU Market Outlook for Solar Power 2023–2027; https://www.solarpowereurope.org/insights/outlooks/eu-market-out-look-for-solar-power-2023-2027/detail (Accessed: 08.06.2024).
  • 4. Raport. Energia elektryczna wytworzona z odnawialnych źródeł energii w mikroinstalacjach (w tym przez prosumentów) i wprowadzana do sieci dystrybucyjnej w 2023r., Urząd Regulacji Energetyki, Warszawa, marzec 2024; https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/raport-oze-art-6a-ustaw/3793,Raport-dotyczacy-energii-elektrycznej-wytworzonej-z-OZE-w-mikroinstalacji-i-wpro.html (Accessed: 08.06.2024).
  • 5. Muller M.O., Stampfli A., Dold U., Hammer T. Energy autarky: A conceptual framework for sustainable regional development. Energy Policy 2011; 39(10): 5800–5810. https://doi.org/10.1016/j.enpol.2011.04.019.
  • 6. Kaldellis J. Optimum technoeconomic energy autonomous photovoltaic solution for remote consumers throughout Greece. Energy Conversion and Management 2004; 45(17): 2745–2760. https://doi.org/10.1016/j.enconman.2003.12.007.
  • 7. Kaldellis J.K., Kavadias K.A., Koronakis P.S. Comparing wind and photovoltaic standalone power systems used for the electrification of remote consumers. Renewable and Sustainable Energy Reviews 2007; 11(1): 57–77. https://doi.org/10.1016/j.rser.2004.12.001.
  • 8. Kaldellis J.K., Zafirakis D., Kondili E. Energy payback period analysis of stand-alone photovoltaic systems. Renewable Energy 2010; 35(7): 1444–1454. https://doi.org/10.1016/j.renene.2009.12.016.
  • 9. Petrakopoulou F., Robinson A., Loizidou M. Simulation and evaluation of a hybrid concentrating-solar and wind power plant for energy autonomy on islands. Renewable Energy 2016; 96(PA): 863–871. https://doi.org/10.1016/j.renene.2016.05.030.
  • 10. Petrakopoulou F. On the economics of standalone renewable hybrid power plants in remote regions. Energy Conversion and Management 2016; 118: 63–74. https://doi.org/10.1016/j.enconman.2016.03.070.
  • 11. Diaf S., Notton G., Belhamel M., Haddadi M., Louche A. Design and technoeconomical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy 2008; 85(10): 968–987. https://doi.org/10.1016/j.apenergy.2008.02.012.
  • 12. Juntunen J. K., Martiskainen M. Improving understanding of energy autonomy: A systematic review. Renewable and Sustainable Energy Re-views 2021; 141: 110797. https://doi.org/10.1016/jrser.2021.110797.
  • 13. Ukoba K., Fadare O., Jen Tien-Chien. Powering Africa using an off-grid, stand-alone, solar photovoltaic model. Journal of Physics: Conference Series 2019; 1378: 022031. https://doi.org/10.1088/1742-6596/1378/2/022031.
  • 14. Kaldellis J. Parametrical investigation of the wind – hydro electricity production solution for Aegean Archipelago. Energy Conversion and Management 2002; 43(16): 2097–2113. https://doi.org/10.1016/S0196-8904(01)00168-6.
  • 15. Katsaprakakis D., Voumvoulakis M. A hybrid power plant towards 100% energy autonomy for the Island of Sifnos, Greece. Perspectives created from Energy cooperatives. Energy 2018; 161: 680–698. https://doi.org/10.1016/j.energy.2018.07.198.
  • 16. Brosig C., Waffenschmidt E. Energy autarky of households by sufficiency measures. Energy Procedia 2016; 99: 194–203. https://doi.org/10.1016/j.egypro.2016.10.110.
  • 17. Russo G., Anifantis A., Verdiani G., Scarascia G. Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosystems Engineering 2014; 127(7): 11–23. https://doi.org/10.1016/j.biosystemseng.2014.08.002.
  • 18. Sonneveld P.J., GLAM Swinkels, Campen J., van Tuijl B.A.J., Janssen H.J.J., Bot G.P.A. Performance results of a solar greenhouse combining electrical and thermal energy production. Biosystems Engineering 2010; 106(1): 48–57. https://doi.org/10.1016/j.biosystemseng.2010.02.003.
  • 19. Al-Shamiry F., Ahmad D., Sharif R., Aris I., Janius R., Kamaruddin R. Design and development of photovoltaic power system for tropical greenhouse cooling. American Journal of Applied Sciences 2007; 4(6): 386–389. https://doi.org/10.1016/j.solener.2020.01.057.
  • 20. Maerefat M., Haghighi A.P. Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renewable Energy 2010; 35(10): 2316–2324. https://doi.org/10.1016/j.renene.2010.03.003.
  • 21. Mongkon S., Thepa S., Namprakai P., Pratinthong N. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse. Energy Conversion and Management 2014; 78: 225–236. https://doi.org/10.1016/j.enconman.2013.10.076.
  • 22. Hassanien R., Hassanien E., Li M., Dong Lin W. Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews 2016; 54(C): 989–1001. https://doi.org/10.1016/j.rser.2015.10.095.
  • 23. Pande P.C., Singh A.K., Ansari S., Vyas S.K., Dave B.K. Design development and testing of a solar PV pump based drip system for orchards. Renewable Energy 2003; 28(3): 385–396. https://doi.org/10.1016/S0960-1481(02)00037-X.
  • 24. Boutelhig A., Bakelli Y., Hadj Mahammed I., Hadj Arab A. Performances study of different PV powered DC pump configurations for an optimum energy rating at different heads under the outdoor conditions of a desert area. Energy 2012; 39(1): 33–39. https://doi.org/10.1016/j.energy.2011.10.016.
  • 25. Al-Ali A.R., Rehman S., Al-Agili S., Al-Omari M.H., Al-Fayezi M. Usage of photovoltaics in an automated irrigation system. Renewable Energy 2001; 23(1): 17–26. https://doi.org/10.1016/S0960-1481(00)00110-5.
  • 26. Haddad S., Benghanem M., Mellit A., Daffallah K.O. ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: experimental validation. Renewable Sustainable Energy Reviews 2015; 43: 635–643. https://doi.org/10.1016/j.rser.2014.11.083.
  • 27. Ebaid M.S.Y., Qandil H., Hammad M. A unified approach for designing a photovoltaic solar system for the underground water pumping well-34 at Disi aquifer. Energy Conversion and Management 2013; 75: 780–795. https://doi.org/10.1016/j.enconman.2013.07.083.
  • 28. Słomczyńska K., Mirek P., Panowski M. Analysis of the potential for reducing the energy consumption of a vegetable sprouts production using flownex simulation software. Advances in Science and Technology Research Journal 2023; 17(5): 163–173. https://doi.org/10.12913/22998624/170944.
  • 29. Słomczyńska K, Mirek P., Panowski M., Saja-Garbarz D., Janeczko A., Skoczowski A. Assessing the feasibility of recovering heat from Mung Bean sprout production for food consumption, Thermochimica Acta, 2024; 731: 179654, https://doi.org/10.1016/j.tca.2023.179654.
  • 30. Mirek P., Panowski M., Słomczyńska K., Stanek M., Bąkowski T. Resources and potential for utilization of low-exergy heat from mung bean sprouts cultivation – case study, Archives of thermodynamics, 2023; 44(4): 507–534, https://doi.org/10.24425/ather.2023.149727.
  • 31. Słomczyńska K. Wykorzystanie ciepła odpadowego o niskiej egzergii z procesu produkcji kiełków warzywnych, PhD Thesis at Czestochowa University of Technology, Czestochowa, 2024, https://bip.pcz.pl/plik,2264,rozprawa-doktorska.pdf.
  • 32. https://www.gov.pl/web/archiwum-inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow (Accessed: 30.06.2024).
  • 33. https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.2 (Accessed: 30.06.2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-525dd244-2f07-404f-985e-a1df84668df2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.