PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical and geotechnical evaluation of stability of natural smectite/kaolinite soils as geological discharge site of acidic solid waste in Tunisia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate the effects of acidic phosphate solution (PS) from phosphogypsum collected from the Tunisian Chemical Group in Gabes, with a pH of 2.6, on the physico-chemical and mechanical properties of Tunisian clay soils, Aleg (AG) and El Haria (EH). Here, the feasibility of employing these soils as natural impermeable barriers for phosphogypsum (PG) disposal sites has been explored. Mineralogical and chemical compositions of raw and modified clays were identified using XRD and XRF. The contact effect of phosphoric aqueous waste in comparison to tap water on raw clays, was revealed by a clear disappearance of the carbonate peak. The drained shear strength of Aleg soil decreased to 48 kPa. Conversely, the cohesion of El Haria soil increased with phosphate solution. Triaxial test results showed c’ and φ’ decreased to 44 kPa and 21° for AG and increased to 155 kPa and 27° for EH. AG and EH clays showed an important support capacity that reached 38 m and 57 m, respectively.
Czasopismo
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes, 6072 Zrig Gabès, Tunisia
  • Laboratory of composite materials and clay minerals, National Center for Research in Materials Science Borj Cedria (CNRSM), B.P. 73-8020 Soliman, Tunisia
  • Higher Institute of Technological Studies of Rades, BP 172, 2098 Radès Medina, Tunisia
  • Laboratory of Civil Engineering, Univ. of Tunis El Manar, National Engineering School of Tunis, B.P. 37 Le Belvédère, 1002 Tunis, Tunisia
autor
  • Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes, 6072 Zrig Gabès, Tunisia
autor
  • Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes, 6072 Zrig Gabès, Tunisia
  • Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes, 6072 Zrig Gabès, Tunisia
  • Laboratory of composite materials and clay minerals, National Center for Research in Materials Science Borj Cedria (CNRSM), B.P. 73-8020 Soliman, Tunisia
Bibliografia
  • Abouloifa, W., Belbsir, H., Ettaki, M., Hayani Mounir, S., El-Hami, K., 2023. Moroccan phosphogypsum: complete physico-chemical characterization and rheological study of phosphogypsum-slurry. Chemistry Africa, 6 (3), 1605–1618.
  • Al-Hwaiti, M.S., Al-Khashman, O.A., 2019. Potentially Utilizations of Jordan Phosphogypsum: A Review. International Journal of Current Research 11, 3258–3262.
  • Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T., Daoud, A., 2008. Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia. Materials Characterization 59, 1613–1622. https://doi.org/10.1016/j.matchar.2008.02.008
  • Bouaziz, S., 1995. Étude de la tectonique cassante dans la plate-forme et l’atlas Saharien (Tunisie méridionale): Évolution des paléochamps de contraintes et implication géodynamique. Thèse de doctorat, Université de Tunis II.
  • Bouassida, M., 2012. Étude de stabilité du terril de phosphogypse de Sfax, Rapport d’étude géotechnique. Université de Tunis El Manar, ENIT: Tunis, Tunisia.
  • Bowders, J.J., Daniel, D.E., 1987. Hydraulic Conductivity of Compacted Clay to Dilute Organic Chemicals. International Journal of Geotechnical Engineering 113, 1432–1448. https://doi.org/10.1061/ (ASCE)0733-9410(1987)113:12(1432)
  • BS, British Standards Institution, 1377-2, 1990. Methods of test for soils for civil engineering purposes – Part 2: Classification tests. BSI, London.
  • BS, British Standards Institution, 1377-5, 1990. Methods of test for soils for civil engineering purposes – Part 5: Compressibility and consolidation tests.
  • Burollet, P.F., 1956. Contribution stratigraphique de la Tunisie Centrale. Imp. LARAPIDE, 350.
  • Casagrande, A., 1947. The determination of the liquid limit by means of a plasticity chart. Proceedings of the American Society for Testing and Materials 47, 1436–1444.
  • Chaari, A., 2013. Stabilité d’un terril de phosphogypse, Projet de fin d’études. Université de Tunis El Manar, ENIT: Tunis, Tunisia.
  • Cichy, B., Kraszewski, C., Rafalski, L., 2018. Geotechnical properties of phosphogypsum and its use in road engineering. In: Proceedings of China-Europe Conference on Geotechnical Engineering, Vienna, Austria. Springer: Cham, Switzerland, 1664–1667. https://doi.org/ 10.1007/978-3-319-97115-5_166
  • El Ayeb, N., Muhr, H., Bejaoui, M., Mahmoudi, E., 2020. Caractérisation du phosphogypse issu de l’industrie du groupe chimique tunisien et sa distribution dans l’eau et le sédiment du golfe de Gabès. Revue FSB XVIII, 65–74. https://www.researchgate.net/publication/348183007
  • EN, 1997-1, 2004. Eurocode 7. Geotechnical design – Part 1: General rules. Brussels, European Committee for Standardization (CEN).
  • Fuleihan, N.F., 2012. Phosphogypsum Disposal – The Pros and Cons of Wet Versus Dry Stacking. Procedia Engineering 46, 195–205. https://doi.org/10.1016/j.proeng.2012.09.465
  • Gabsi, H., Tallou, A., Aziz, F., Boukchina, R., Karbout, N., Caceres, L.A., Moussa, M., 2023. Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy. Sustainability 15 (6), 4769. https://doi.org/10.3390/su15064769
  • Gajo, A., Maines, M., 2007. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active Clay. Geotechnique 57, 687–709. https://doi.org/10.1680/geot.2007.57.8.687
  • Gao, L., Li, R., Yang, D., Bao, L., Zhang, N., 2025. Phosphogypsum improves soil and benefits crop growth: An effective measure for utilizing solid waste resources. Scientific Reports, 15 (1), 11827. https://doi.org/10.1038/s41598-025-97216-8
  • Garcia-Guzman, P., Medina-Torres, L., Bernad-Bernad, M.J., Calderas, F., Manero, O., 2023. Study of the cholesterol adsorption and characterization of montmorillonite and bentonite clay. Mater Today Commun 35, 105604. https://doi.org/10.1016/j.mtcomm. 2023.105604
  • Geotechnical Engineering Research Unit, 2007. Unité de recherche ingénierie géotechnique, Étude de stabilité du terril de phosphogypse de Skhira. Université de Tunis El Manar, ENIT: Tunis, Tunisia.
  • Gratchev, I., Towhata, I., 2011. Compressibility of natural soils subjected to long-term acidic contamination. Environmental Earth Sciences 64, 193–200. https://doi.org/10.1007/s12665-010-0838-2
  • Guedri, A., Abdallah, F., Mefteh, N., Hamdi, N., Baeza-Urrea, O., Wagner, J.F., Zagrarni, M.F., 2023. Addition of phosphogypsum to fire-resistant plaster panels: A physic-mechanical investigation. Inorganics 11, 35. https://doi.org/10.3390/inorganics11010035
  • Hamdi, N., Marzouki, A., Srasra, E., 2008. Comparison of three Tunisian clayey soils for containing acid waste. Bulletin of Engineering Geology Environment 67, 245–249.
  • Husein Malkawi, D.A., Husein Malkawi, A.I., Bani-Hani, K.A., 2022. Slope stability analysis for the phosphogypsum stockpiles: A case study for the sustainable management of the phosphogypsum stacks in Aqaba Jordan. Sustainability 14 (23), 15763. https://doi. org/10.3390/su142315763
  • ISO, 17892-11, 2019. Geotechnical investigation and testing – Laboratory testing of soil – Part 11: Permeability tests. International Organization for Standardization (ISO), Geneva, Switzerland.
  • Imai, G., Komatsu, Y., Fukue, M., 2006. Consolidation yield stress of Osaka-Bay Pleistocene clay with reference to calcium carbonate contents. Journal of ASTM International 3, 1–9. https://doi.org/10.1520/JAI13325
  • Kumar, A., Lingfa, P., 2019. Sodium bentonite and kaolin clays: Comparative study on their FT-IR. Materials Today Proceedings 22, 737–742. https://doi.org/10.1016/j.matpr.2019.10.037
  • Li, H., Tan, Y., Xu, X., Wu, J., 2023. Coupled thermal-hydro model tests of double-layered buffer for nuclear waste repository. Progress in Nuclear Energy 156, 104541. https://doi.org/10.1016/j. pnucene.2022.104541
  • Magnan, J.P., 2006. Description, identification et classification des sols. Techniques de l’Ingénieur, traité Construction, vol. 1, no. C208, France.
  • Mitchell, J., 1993. Fundamentals of soil behavior. 2nd Edition, Wiley, London, pp. 456.
  • Moneim, M.A., Ahmed, E.A., 2015. Synthesis of faujasite from Egyptian clays: Characterizations and removal of heavy metals. Geomaterials 5, 68–76. https://doi.org/10.4236/gm.2015.52007
  • Oladoye, P.O., 2022. Natural, low-cost adsorbents for toxic Pb (II) ion sequestration from (waste) water: A state-of the-art review. Chemosphere 287, 132130. https://doi.org/10.1016/j.chemosphere.2021. 132130
  • Önal, M., Sarıkaya, Y., 2007. Preparation and characterization of acid-activated bentonite powders. Powder Technology 172 (1), 14–18. https://doi.org/10.1016/j.powtec.2006.10.034
  • Özçoban, M.Ş., Acarer, S., Tüfekci, N., 2022. Effect of solid waste landfill leachate contaminants on hydraulic conductivity of landfill liners. Water Science and Technology 85 (5), 1581–1599. https://doi.org/10.2166/wst.2022.033
  • Prian, J.P., Donsimoni, M., Vincent, M., 2000. Cartographie de l’aléa retrait-gonflement des argiles dans le département de l’Essonne.Rapport BRGM no. RP-50376:269.
  • Rakhila, Y., Mestari, S., Elmchaouri, A., 2018. Elaboration and characterization of new ceramic material from clay and phosphogypsum. Rasayan Journal of Chemistry 11 (4), 1552–1563. http://dx.doi. org/10.31788/RJC.2018.1144025
  • Wallis, P.J., Gates, W.P., Patti, A.F., 2007. Assessing and improving the catalytic activity of K-10 montmorillonite. Green Chemistry 9, 1–8. https://doi.org/10.1039/b701504f
  • Wang, S., Gu, Y., Gao, Y., 2024. Surface treatment with nano-silica and magnesium potassium phosphate cement co-action for enhancing recycled aggregate concrete. Nanotechnology Reviews 13 (1), 20230192. https://doi.org/10.1515/ntrev-2023-0192
  • Yahia, E.A.M., Amer, A. Al-R., Mohammed, Y. Al-A., 2005. Assessment of crushed shales for use as compacted landfill liners. Engineering Geology 80, 271–281. https://doi.org/10.1016/j.enggeo. 2005.06.001
  • Zairi, M., Rouis, M.J., 1999. Impacts environnementaux du stockage du phosphogypse à Sfax (Tunisie). Bulletin Laboratoires Ponts et Chaussées 219, 29–40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-525c429c-068a-4a42-b1ef-dbcb7c219fc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.