Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Study of the diffusion properties of alginate biopolymer
Języki publikacji
Abstrakty
Właściwości dyfuzyjne biopolimeru, jakim był alginian wapnia, oceniono poprzez wielkość efektywnego współczynnika dyfuzji (De) wybranych jonów metali ciężkich w granulkach alginianowych. Granulki zawierały 5–10,8% mas. biosorbentu. Zbadano wpływ rodzaju jonu metalu, temperatury procesu, pH roztworu oraz zawartości alginianu w granulkach. Wartość De dla wybranych jonów metali ciężkich malała w kolejności: Cu > Zn > Pb > Cd > Cr. Dyfuzja jonów Cu(II) wewnątrz granulek alginianu wapnia przebiegała tym lepiej, im bardziej kwaśny był odczyn roztworu oraz im wyższa była temperatura procesu, a wzrost zawartości alginianu w granulkach prowadził do obniżenia wielkości De. Uzyskano dobrą zgodność danych doświadczalnych z modelem matematycznym.
The diffusion properties of calcium alginate biopolymer was investigated by determining the effective diffusion coefficient (De) in alginate granules containing 5–10.8% by mass of biosorbent. The influence of the type of sorbed metal ion, process temperature, solution pH and alginate content in the granules was investigated. It turned out that diffusion proceeds better, the more acidic the solution pH and the higher the process temperature. Increasing alginate content in the granules led to a decrease in the De value. For selected heavy metal ions De value decreases in the following order: Cu > Zn > Pb > Cd > Cr. Good agreement of the experimental data with the mathematical model was obtained.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--33
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
autor
- Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich w Bydgoszczy, Bydgoszcz
Bibliografia
- [1] Nedovic V., Kalusevic A., Manojlovic V., Levic S., Bugarski B.: An overview of encapsulation technologies for food applications. Proc. Food Sci. 1 (2011) 1806–1815.
- [2] Puguan J.M.C., Yu X., Kim H.: Diffusion characteristics of different molecular weight solutes in Ca-alginate gel beads. Colloids Surf. A: Physicochem. Eng. Asp. 469 (2015) 158–165.
- [3] Murata Y., Sasaki N., Miyamoto E., Kawashima S.: Use of floating alginate gel beads for stomach-specific drug delivery. Eur. J. Pharma. Biopharma. 50 (2000) 221–226.
- [4] Hay I.D., Rehman Z.U., Ghafoor A., Rehm B.H.A.: Bacterial biosynthesis of alginates. J. Chem. Technol. Biotechnol. 85 (2010) 752–759.
- [5] Perullini M., Orias F., Durrieu C., Jobbágy M., Bilmes S.A.: Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm. Biotechnol. Rep. 4 (2014) 147–150.
- [6] Ren H., Gao Z., Wu D., Jiang J., Sun Y., Luo C.: Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads. Preparation, characterization, and adsorption mechanism. Carbohydr. Polym. 137 (2016) 402–409.
- [7] Amsden B., Turner N.: Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65 (1999) 605–610.
- [8] Papageorgiou S.K., Katsaros F.K., Kouvelos E.P., Kanellopoulos N.K.: Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater. 162 (2009) 1347–1354.
- [9] Song D., Park S.J., Kang H.W., Park S.B., Han J.I.: Recovery lithium(I), strontium(II) and lanthanum(III) using calcium alginate beads. J. Chem. Eng. Data 58 (2013) 2456–2457.
- [10] Nastaj J., Przewłocka A., Rajkowska-Myśliwiec M.: Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Pol. J. Chem. Technol. 18 (3) (2016) 81–87.
- [11] Marcos B., Gou P., Arnau J., Comaposada J.: Influence of processing conditions on the properties of alginate solutions and wet edible calcium alginate coatings. LWT 74 (2016) 271–279.
- [12] Papageorgiou S.K., Kouvelos E.P., Katsaros F.K.: Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224 (2008) 293–306.
- [13] Bajpai S.K., Sharma S.: Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 59 (2004) 129–140.
- [14] Ouwerx C., Velings N., Mestdagh M.M.: Axelos M.A.: Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Networks 6 (1998) 393–408.
- [15] He X., Liu Y., Li H., Li H.: Single-stranded structure of alginate and its conformation evolvement after an interaction with calcium ions as revealed by electron microscopy. RSC Adv. 6 (115) (2016) 114779–114782.
- [16] Braccini I., Pérez S.: Molecular basis of Ca2+-induced gelation in alginates and pectins. The egg-box model revisited. Biomacromolecules 2 (4) (2001) 1089–1096.
- [17] Velings N., Mestdagh M.M.: Physicochemical properties of alginate gel beads. Polym. Gels Networks 3 (1995) 311–330.
- [18] Nunamaker E.A., Purcell E.K., Kipke D.R.: In vivo stability and biocompatibility of implanted calcium alginate disks. J. Biomed. Mater. Res. Part A 83 (4) (2007) 1128–1137.
- [19] Bienaime Ch., Barbotin J., Nava-Saucedo J.: How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells. J. Biomed. Mater. Res. Part A 67 (2) (2003) 376–88.
- [20] Spedalieri C., Sicard C., Perullini M., Brayner R., Coradin T., Livage J.: Silica@proton-alginate microreactors. A versatile platform for cell encapsulation. J. Mater. Chem. 3 (2015) 3189–3194.
- [21] Ibanez J.P., Umetsu Y.: Removal of heavy metal ions by using alginate beads. Proc. V Int. Conf. on Clean Technologies for the Mining Industry, Santiago-Chile 2000, 49–58.
- [22] Chiew C.S.C., Yeoh H.K., Pasbakhsh P., Poh P.E., Tey B.T., Chan E.S.: Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polym. Degrad. Stab. 123 (2016) 146–154.
- [23] Thakur S., Sharma B., Verm A., Chaudhary J., Tamulevicius S., Thakur V.K.: Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean Prod. 198 (2018) 143–159.
- [24] Hu Ch., Lu W., Mata A., Nishinari K., Fang Y.: Ions-induced gelation of alginate. Mechanisms and applications. Int. J. Biol. Macromol. 177 (2021) 578–588.
- [25] Jang K.L.: Diffusivity of Cu2+ in calcium alginate gel beads. Bioechnol. Bioeng. 43 (1994) 183–185.
- [26] Lagoa R., Rodrigues J.R.: Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake. Appl. Biochem. Biotechnol. 143 (2007) 115–128.
- [27] Klimiuk E., Kuczajowska-Zadrożna M.: The effect of poly(vinyl alcohol) on cadmium adsorption and desorption from alginate adsorbents. Pol. J. Environ. Stud. 11 (2002) 375–384.
- [28] Volesky B.: Biosorption process simulation tools. Hydrometallurgy 71 (2003) 179–190.
- [29] Papageorgiou S.K., Kouvelos E.P., Katsaros F.K., Nolan J.W., Le Delt H., Kanellopoulos N.K.: Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. B137 (2006) 1765–1772.
- [30] Apel M.L., Torma A.E.: Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Can. J. Chem. Eng. 71 (1993) 652–656.
- [31] Lewandowski Z., Roe F.: Diffusitivity of Cu2+ in calcium alginate gel beads. Recalculation. Biotechnol. Bioeng. 43 (1994) 186.
- [32] Arevalo E., Rendueles M., Fernandez A., Rodrigues A., Diaz M.: Uptake of copper and cobalt in a complexing resin. Shrinking-core model with two reaction fronts. Sep. Purif. Technol. 13 (1998) 37–46.
- [33] Araujo M.M., Teixeira J.A.: Trivalent chromium sorption on alginate beads. Int. Biodeter. Biodegr. 40 (1997) 63–74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-525bfac1-2a1b-4c5f-93ac-5d50ddd6ed20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.