PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alteration of mélange-hosted chromitites from Korydallos, Pindos ophiolite complex, Greece: evidence for modification by a residual high-T post-magmatic fluid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The peridotites from the area of Korydallos, in the Pindos ophiolitic massif, crop out as deformed slices of a rather dismembered sub-oceanic, lithospheric mantle section and are tectonically enclosed within the Avdella mélange. The most sizeable block is a chromitite-bearing serpentinite showing a mesh texture. Accessory, subhedral to euhedral Cr-spinels in the serpentinite display Cr# [Cr/(Cr + Al)] values that range from 0.36 to 0.42 and Mg# [Mg/(Mg + Fe2+)] values that vary between 0.57 and 0.62, whereas the TiO2 content may be up to 0.47 wt.%. The serpentinite fragment is characterized by low abundances of magmaphile elements (Al2O3: 0.66 wt.%, CaO: 0.12 wt.%, Na2O: 0.08 wt.%, TiO2: 0.007 wt.%, Sc: 4 ppm) and enrichment in compatible elements (Cr: 2780 ppm and Ni: 2110 ppm). Overall data are in accordance with derivation of the serpentinite exotic block from a dunite that was formed in the mantle region underneath a back-arc basin before tectonic incorporation in the Korydallos mélange. Two compositionally different chromitite pods are recognized in the studied serpentinite fragment, a Cr-rich chromitite and a high-Al chromitite, which have been ascribed to crystallization from a single, progressively differentiating MORB/IAT melt. Although both pods are fully serpentinized only the Al-rich one shows signs of limited Cr-spinel replacement by an opaque spinel phase and clinochlore across grain boundaries and fractures. Modification of the ore-making Cr-spinel is uneven among the Al-rich chromitite specimens. Textural features such as olivine replacement by clinochlore and clinochlore disruption by serpentine indicate that Cr-spinel alteration is not apparently related to serpentinization. From the unaltered Cr-spinel cores to their reworked boundaries the Al2O3 and MgO abundances decrease, being mainly compensated by FeOt and Cr2O3 increases. Such compositional variations are suggestive of restricted ferrian chromite (and minor magnetite) substitution for Cr-spinel during a short-lived but relatively intense, low amphibolite facies metamorphic episode (temperature: 400–700 °C). The presence of tremolite and clinochlore in the interstitial groundmass of the high-Al chromitite and their absence from the Cr-rich chromitite matrix imply that after chromitite formation a small volume of a high temperature, post-magmatic fluid reacted with Cr-spinel, triggering its alteration.
Słowa kluczowe
Rocznik
Strony
473--494
Opis fizyczny
Bibliogr. 89 poz., il.
Twórcy
  • Department of Geology, Section of Earth Materials, Panepistimiopolis of Rion, University of Patras, 265 04 Patras, Greece
  • School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. of China
Bibliografia
  • 1. Ahmed, A.H., Arai, S. and Attia, A.K. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Mineralium Deposita, 36, 72–84.
  • 2. Ahmed, A.H., Harbi, H.M. and Habtoor, A.M. 2012. Compositional variations and tectonic settings of podiform chromitites and associated ultramafic rocks of the Neoproterozoic ophiolite at Wadi Al Hwanet, northwestern Saudi Arabia. Journal of Asian Earth Sciences, 56, 118–134.
  • 3. Arai, S. and Akizawa, N. 2014. Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite. American Mineralogist, 99, 28–34.
  • 4. Arai, S., Shimizu, Y., Ismail, S.A. and Ahmed, A.H. 2006. Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq. Mineralogical Magazine, 70, 499–508.
  • 5. Azer, M.K. 2014. Petrological studies of Neoproterozoic serpentinized ultramafics of the Nubian Shield: spinel compositions as evidence of the tectonic evolution of Egyptian ophiolites. Acta Geologica Polonica, 64, 113–127.
  • 6. Bailey, S.W. 1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1–7.
  • 7. Ballhaus, C.G. and Stumpfl, E.F. 1986. Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluids inclusions. Contributions to Mineralogy and Petrology, 94, 193–204.
  • 8. Barnes, S.J. 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41, 387–409.
  • 9. Beccaluva, L., Coltorti, M., Saccani, E. and Siena, F. 2005. Magma generation and crustal accretion as evidenced by supra-subduction ophiolite of the Albanide-Hellenide Subpelagonian Zone. The Island Arc, 14, 551–563.
  • 10. Beccaluva, L., Ohnenstetter, D., Ohnenstetter, M. and Paupy, A. 1984. Two magmatic series with island arc affinities within the Vourinos Ophiolites. Contributions to Mineralogy and Petrology, 85, 253–271.
  • 11. Brunn, J.H. 1956. Contribution à ľétude géologique du Pinde septentrional et d'une partie de la Macédoine occidentale. Annales Géologiques Des Pays Helléniques, 7, pp. 358.
  • 12. Burkhard, D.J.M. 1993. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochimica et Cosmochimica Acta, 57, 1297–1306.
  • 13. Candia, M.A.F. and Gaspar, J.C. 1997. Chromian spinels in metamorphosed ultramafic rocks from Mangabal I and II complexes, Goias, Brazil. Mineralogy and Petrology, 60, 27–40.
  • 14. Ceuleneer, G., Nicolas, A. and Boudier, F. 1988. Mantle flow patterns an oceanic spreading center: the Oman peridotites record. Tectonophysics, 151, 1–26.
  • 15. Colás, V., Gervilla, F., Fanlo, I., Kerestedjian, T., Sergeeva, I., González-Jiménez, J.M. and Arranz, E. 2012. Factors Controlling Chromite Alteration: Example from Costurino, SE Bulgaria. In: Revista de la sociedad espaňola de mineralogia. Revista de la sociedad espańola de mineralogia , Macla, 16, 238–239.
  • 16. Danelian, T. and Robertson, A.H.F. 2001. Neotethyan evolution of eastern Greece (Pagondas Me 'lange, Evia Island) inferred from Radiolarian biostratigraphy and the geochemistry of associated extrusive rocks. Geological Magazine, 138, 345–363.
  • 17. Derbyshire, E.J., O'Driscoll, B., Lenaz, D., Gertisser, R. and Kronz, A. 2013. Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos, 162-163, 279–300.
  • 18. Dick, H.J.B. and Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76.
  • 19. Dijkstra, A.H., Barth, M.G., Drury, M.R., Mason, P.R.D. and Vissers, R.L.M. 2003. Diffuse porous melt flow and meltrock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochemistry Geophysics Geosystems, 4, doi: 1029/2001GC000278.
  • 20. Dilek, Y., Furnes, H. and Shallo, M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 11, 453–475.
  • 21. Dubois-Côté, V., Hébert, R., Dupuis, C., Wang, C.S., Li, Y.L. and Dostal, J. 2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, 214, 265–286.
  • 22. Economou-Eliopoulos, M. 2003. Apatite and Mn, Zn, Co-enriched chromite in Ni Laterites of northern Greece and their genetic significance. Journal of Geochemical Exploration, 80, 41–54.
  • 23. Ernst, W.G. 1993. Metamorphism of Franciscan tectonostratigraphic assemblage, Pacheco Pass area, east-central Diablo Range, California Coast Ranges. Bulletin of the Geological Society of America, 105, 618–636.
  • 24. Evans, B.W. and Frost, B.R. 1975. Chrome-spinel in progressive metamorphism. A preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959–972.
  • 25. Ferrario, A. and Garuti, G. 1990. Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy). Mineralogy and Petrology, 41, 125–143.
  • 26. Gahlan, H.A. and Arai, S. 2007. Genesis of peculiarly zoned Co, Zn, and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. Journal of Mineralogical and Petrological Sciences, 2, 69–85.
  • 27. Gervilla, F., Padrón-Navarta, J.A., Kerestedjian, T., Sergeeva, I., González-Jiménez, J.M. and Fanlo, I. 2012. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two stage process. Contributions to Mineralogy and Petrology, 164, 643–657.
  • 28. Ghikas, C., Dilek, Y. and Rassios, A.E. 2010. Structure and tectonics of subophiolitic mélanges in the western Hellenides (Greece): implications for ophiolite emplacement tectonics. International Geology Reviews, 52, 423–453.
  • 29. González-Jiménez, J.M., Kerestedjian, T., Proenza, J.A. and Gervilla, F. 2009. Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope mountains (SE Bulgaria). Geologica Acta, 7, 413–429.
  • 30. Grieco, G. and Merlini, A. 2011. Chromite alteration processes within Vourinos ophiolite. International Journal of Earth Sciences, 101, 1523–1533.
  • 31. Hellebrand, E., Snow, J.E., Dick, H.J.B. and Hofmann, A.W. 2001. Coupled major and trace elements as indicator of the extent of melting in mid-ocean-ridge peridotites. Nature, 410, 677–681.
  • 32. Hill, R.J, Craig, J.R. and Gibbs, G.V. 1979. Systematics of the spinel structure type. Physics and Chemistry of Minerals, 4, 317–339.
  • 33. Hoffman, E.L. 1992. Instrumental Neutron Activation in Geoanalysis. Journal of Geochemical Exploration, 44, 297–319.
  • 34. Ishii, T., Robinson, P.T., Maekawa, H. and Fiske, R. 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Mariana fore-arc, Leg 125. Proceedings of the Ocean Drilling Project, Scientific Results, 125, 445–485.
  • 35. Jacobshagen, V. 1986. Geologie von Griechenland. Berlin, Stuttgart, Gebruder Borntraeger, 363.
  • 36. Jan, M.Q. and Windley, B.F. 1990. Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Nothwestern Pakistan. Journal of Petrology, 31, 667–715.
  • 37. Jones, G. and Robertson, A.H.F. 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society of London, 148, 267–288.
  • 38. Jones, G., Robertson, A.H.F. and Cann, J.R. 1991. Genesis and Emplacement of the suprasubduction zone Pindos Ophiolite, northwestern Greece. In: Ophiolite Genesis and Evolution of the Oceanic Lithosphere, Peters, T., Nicolas, A., Coleman, S. (eds.). Sultanate of Oman: Ministry of Petroleum and Minerals, 771–799.
  • 39. Juteau T., Berger E. and Cannat M. 1990. Serpentinized, residual mantle peridotites from the M.A.R. median valley, ODP hole 670A (21o10'N, 45o02'W): primary mineralogy and geothermometry. Proceedings of the Ocean Drilling Project, Scientific Results, 106 (109), 27–45.
  • 40. Kamenetsky, V.S., Crawford, A.J. and Meffre, S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671.
  • 41. Kapsiotis, A. 2013. Genesis of chromitites from Korydallos, Pindos Ophiolite Complex, Greece, based on spinel chemistry and PGE-mineralogy. Journal of Geosciences, 58, 49–69.
  • 42. Kapsiotis, A. 2014. Composition and alteration of Cr-spinels from Milia and Pefki serpentinized mantle peridotites, Pindos Ophiolite Complex, Greece. Geologica Carpathica , 65, 83–95.
  • 43. Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B. and Hatzipanagiotou, K. 2010. Platinum-group mineral characterization in concentrates from high-grade PGE Al-rich chromitites of Korydallos Area in the Pindos Ophiolite Complex (NW Greece). Resource Geology, 60,178–191.
  • 44. Kimball, K.L. 1990. Effects of hydrothermal alteration on the composition of chromian spinels. Contributions to Mineralogy and Petrology, 105, 337–346.
  • 45. Kostopoulos, D.K. 1989. Geochemistry, petrogenesis and tectonic setting of the Pindos Ophiolite, NW Greece. Unpublished Ph.D. Thesis, University of Newcastle, Newcastle, UK, 1–468.
  • 46. Leake, B.E. and 20 others 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission of new minerals and mineral names. The Canadian Mineralogist, 35, 219–246.
  • 47. Liati, A., Gebauer. D. and Fanning., C.M. 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology, 207, 171–188.
  • 48. Melcher, F., Grum, W., Simon, G., Thalhammer, T.V. and Stumpfl, E.F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology , 38, 1419–1458.
  • 49. Mellini, M., Rumori, C. and Viti, C. 2005. Hydrothermally reset magmatic spinels in retrogade serpentinites: Formation of "ferritchromit" rims and chlorite aureoles. Contributions to Mineralogy and Petrology, 149, 266–275.
  • 50. Merlini, A., Grieco, G. and Diella, V. 2009. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). American Mineralogist, 94, 1459–1467.
  • 51. Mukherjee, R., Mondal, S.K., Rosing, M.T. and Frei, R. 2010. Compositional variations in the Mesoarchean chromitites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contributions to Mineralogy and Petrology, 160, 865–885.
  • 52. Myhill, R. 2011. Constraints on the evolution of the Mesohellenic Ophiolite from subophiolitic metamorphic rocks. In: Melanges: Processes of Formation and Societal Significance, Wakabayashi, J., Dilek Y. (Eds). Geological Society of America Special Papers, 480, 75–94.
  • 53. Nicolas, A. 1986. Structure and petrology of peridotites: Clues to their geodynamic environment. Review Geophysics, 27, 999–1022.
  • 54. Nicolas, A. 1989. In: Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic, Dordrecht, The Netherlands, 367.
  • 55. Nozaka, T. and Fryer, P. 2011. Alteration of the oceanic lower crust at a slow-spreading axis: insight from vein-related zoned halos in olivine gabbro from Atlantis Massif, Mid-Atlantic Ridge. Journal of Petrology, 52, 643–664.
  • 56. Ohara, Y. 2006. Mantle process beneath Philippine Sea backarc spreading ridges: A synthesis of peridotite petrology and tectonics. The Island Arc, 15, 119–129.
  • 57. Ohara, Y. and Ishii, T. 1998. Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. The Island Arc, 7, 541–558.
  • 58. Ohara, Y., Stern, R.J., Ishii, T., Yurimoto, H., Yamazaki, T. 2002. Peridotites from the Mariana trough: First look at the mantle beneath an active back-arc basin. Contributions to Mineralogy and Petrology, 143, 1–18.
  • 59. Pawley, A. 2002. Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contributions to Mineralogy and Petrology, 144, 449–456.
  • 60. Pelletier, L., Vils, F., Kalt, A. and Gmeling, K. 2008. Li, B and Be Contents of Harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type Mantle in a Supra-subduction Zone Environment. Journal of Petrology, 49, 2043–2080.
  • 61. Prichard, H., Economou-Eliopoulos, M. and Fisher, P.C. 2008. Contrasting platinum-group mineral assemblages from two different podiform chromitite localities in the Pindos ophiolite complex, Greece. The Canadian Mineralogist , 46, 329–341.
  • 62. Proenza, J.A., Gervilla, F., Melgarejo, J.C. and Bodinier, J.L. 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94, 547–566.
  • 63. Purvis, A.C., Nesbitt, R.W. and Hallberg, J.A. 1972. The geology of part of the Carr Boyd rocks complex and its associated nickel mineralization, Western Australia. Economic Geology, 67, 1093–1113.
  • 64. Rassios, A. 1991. Internal structure and pseudostratigraphy of the Dramala peridotite massif, Pindos mountains, Greece. Bulletin of the Geological Society of Greece, 25, 293–305.
  • 65. Robertson, A.H.F., Clift, P.D., Degnan, P.J. and Jones, G. 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 289–343.
  • 66. Robertson, A.H.F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1–67.
  • 67. Ross, J.V. and Zimmerman, J. 1996. Comparison of evolution and tectonic significance of the Pindos and Vourinos ophiolite suites, northern Greece. Tectonophysics, 256, 1–15.
  • 68. Saccani, E., Beccaluva, L., Coltorti, M. and Siena, F. 2004. Petrogenesis and tectono-magmatic significance of the Albanide-Hellenide ophiolites. Ofioliti, 29, 77–95.
  • 69. Saccani, E., Beccaluva, L., Photiades, A. and Zeda, O. 2011. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic melanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, 124, 227–242.
  • 70. Saumur, B.M. and Hattori, K. 2013. Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic. Mineralogical Magazine, 77, 117–136.
  • 71. Shack, R.O. and Ghiorso, M.S. 1991. Chromian spinels as petrogenetic indicators: thermodynamic and petrological applications. American Mineralogist, 76, 827–847.
  • 72. Singh, A.K. and Singh, R.B. 2013. Genetic implications of Zn- and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geological Journal, 48, 22–38.
  • 73. Snow, J. and Dick, H.B.J. 1995. Pervasive magnesium loss by marine weathering of peridotites. Geochimica et Cosmochimica Acta, 59, 4219–4235.
  • 74. Sobolev, N.V. and Logvinova, A.M. 2005. Significance of accessory chrome spinel in identifying serpentinite paragenesis. International Geology Review, 47, 58–64.
  • 75. Spangenberg, K. 1943. Die chromitlagerstätte von Tampadel in Zobten. Zeitschrift Praktische Geologie, 51, 13–35.
  • 76. Spary, J.G., Bebien, J., Rex, D.C. and Roddick, J.C. 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In: The Geological Evolution of the Eastern Mediterranean, Dixon, J.E., Robertson, A.H.F. (eds.). Geological Society of London Special Publications, 17, 619–627.
  • 77. Stanton, R.L. 1972. Ore petrology. In: International Series in the Earth and Planetary Science. McGraw-Hill, New-York, 1–713.
  • 78. Stern, C.R. and Elthon, D.L. 1979. Vertical variations in the effects of hydrothermal metamorphism in Chilean ophiolitew: Their implications for ocean floor metamorphism. Tectonophysics, 55, 179–213.
  • 79. Suhr, G. 1993. Evaluation of upper mantle microstructures in the Table Mountain Massif (Bay of Islands ophiolite). Journal of Structural Geology, 15, 1273–1292.
  • 80. Suita, M.T.F. and Streider, A.J. 1996. Cr-spinel from Brazilian mafic-ultramafic complexes: Metamorphic modifications. International Geological Review, 38, 245–267.
  • 81. Sun, S.S. and Nesbitt, R.W. 1977. Chemical Heterogeneity of Archaean Mantle, Composition of Earth and Mantle Evolution. Earth and Planetary Science Letters, 35(3), 429-448.
  • 82. Tarkian, M., Economou-Eliopoulos, M. and Sambanis, G. 1996. Platinum-group minerals in chromitites from the Pindos ophiolite complex, Greece. Neues Jahrbuch für Mineralogie, 4, 145–160.
  • 83. Teixeira, R.J.S., Neiva, A.M.R. and Gomes, M.E.P. 2012. Chromian spinels and magnetite of serpentinites, steatitic rocks, tremolite asbestos and chloritites from Braganca massif, northeastern Portugal. Periodico di Mineralogia, 81, 237–256.
  • 84. Thuizat, R., Whitechurch, H., Montigny, R. and Juteau, T. 1981. K-Ar dating of some infra-ophiolitic metamorphic soles from the Eastern Mediterranean: new evidence for ocean thrusting before obduction. Earth and Planetary Science Letters, 52, 301–310.
  • 85. Ulmer, G.C. 1974. Alteration of chromite during serpentinization in the Pennsylvania-Maryland district. American Mineralogist, 59, 1236–1241.
  • 86. Wood, B.J., Kirpatrick, R.J and Montez, B. 1986. Order-disorder phenomena in MgAl2O4 spinel. American Mineralogist , 71, 999–1006.
  • 87. Wylie, A.G., Candela, P.A. and Burkle, T.M. 1987. Compositional zoning in unusual Zn-rich chromite from the Sykeville district of Maryland and its bearing on the origin of the ferritchromit. American Mineralogist, 72, 413–422.
  • 88. Xiong, F., Yang, J., Robinson, P.T., Xu, X., Liu, Z., Li, Y., Li, J. and Chen, S. 2014. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 10.1016/j.gr.2014.04.008.
  • 89. Zhou, M-F., Robinson, P.T., Malpas, J., Edwards, S.J. and Qi, L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46, 615–639.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52579aa6-00fe-44b3-9ae5-f96fb5bba9aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.