PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actinobacterial Communities of Chosen Extreme Habitats in China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Actinobacteria living in frozen soils which potentially could be producers of valuable and biologically active metabolites, remain still largely unexplored. Therefore, the diversity of culturable actinobacteria in the six frozen soil samples collected from the high-latitude and the high-altitude regions in China was investigated by using the culture-dependent method and 16S rRNA gene analysis. A total of 184 culturable actinobacterial isolates (morphotypes) were obtained. The abundance of culturable actinobacteria was 6.20 × 103–3.49 × 105 colony forming units (CFU) per gram of soil (dry weight). The actinobacteria isolated from the high-latitude region in China belong to five genera: Streptacidiphilus, Kitasatospora, Streptomyces, Arthrobacter, and Rhodococcus. The strains belonging to Arthrobacter were dominant, the 19 strains were closely related to Arthrobacter globiformis in terms of evolutionary distance. The actinobacterial isolates from the high-altitude region, from 2,813 m to 4,775 m in elevation, in China could be grouped into six genera (Arthrobacter, Microbacterium, Streptomyces, Rhodococcus, Nocardia, and Nocardiopsis), with dominant Streptomyces and Arthrobacter strains. The 4 strains were closely related to Rhodococcus fascians and one strain was closely with Microbacterium hydrocarbonoxydans in terms of evolutionary distance. Three genera of Arthrobacter, Streptomyces, and Rhodococcus were found in both areas. Our research provides new insight into the characteristics of the distribution of actinobacteria associated with frozen soils, which help us gain a better understanding of the potential of the cryogenic environments – the potential source of actinobacterial antibiotics.
Rocznik
Strony
181--194
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
autor
  • School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
autor
  • School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
autor
  • School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
autor
  • School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
autor
  • College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, 2 Yuanmingyuan West Road, Beijing 100193, China
  • School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
Bibliografia
  • 1. Alvarez A., Saez J. M., Davila C. J. S. 2017 – Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals – Chemosphere, 166: 41-62.
  • 2. Azman A. S., Othman I., Velu S. S., Chan K. G., Lee L. H. 2015 – Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity – Front. Microbiol. 6: 856.
  • 3. Bao S. D. 2000 – Soil and Agricultural Chemistry Analysis – China Agriculture Press, Beijing. pp. 25-225.
  • 4. Bull A. T., Stach J. E. M. 2007 – Marine actinobacteria: new opportunities for natural product search and discovery – Trends Microbiol. 15: 491-499.
  • 5. Bull A. T., Stach J. E. M., Ward A. C., Goodfellow M. 2005 – Marine actinobacteria: perspectives, challenges and future directions – Antonie van Leeuwenhoek, 87: 65-79.
  • 6. Chu H., Fierer N., Lauber C. L., Caporaso J. G., Knight R., Grogan P. 2010 – Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes – Environ. Microbiol. 12: 2998-3006.
  • 7. Chu H. Y., Neufeld J. D., Walker V. K., Grogan P. 2011 – The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in low Arctic tundra landscape – Soil Sci. Soc. Am. J. 75: 1756-1765.
  • 8. Cifuentes A., Anton J., Benlloch S., Donnelly A., Herbert R. A., Rodriguez-Valera F. 2000 – Prokaryotic diversity in Zostera noltii colonized marine sediments – Appl. Environ. Microbiol. 66: 1715-1719.
  • 9. Cong J., Yang Y. F., Liu X. D., Lu H., Liu X., Zhou J. Z., Li D. Q., Yin H. Q., Ding J. J., Zhang Y. G. 2015 – Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession – Scientific Reports, 5, pp. 109-114.
  • 10. Conville P. S., Brown J. M., Steigerwalt A. G., Brown-Elliott B. A., Witebsky F. G. 2008 – Nocardia wallacei sp. nov. and Nocardia blacklockiae sp. nov., human pathogens and members of the “Nocardia transvalensis Complex” – J. Clin. Microbiol. 46: 1178-1184.
  • 11. Dhakal D., Pokhrel A. R., Shrestha B., Sohng J. K. 2017 – Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds – Front. Microbiol. 8: 1106.
  • 12. Ding L. X., Taketo H., Akira Y. 2009 – Four novel Arthrobacter species isolated from filtration substrate – Int. J. Syst. Evol. Microbiol. 59: 856-862.
  • 13. Gilichinsky D. 2002 – Permafrost as a microbial habitat – Wiley, New York, pp. 2367-2385.
  • 14. Godofredo S., Keilor R. J., Marcel J., Giselle T. C. 2009 – Study of the diversity of culturable actinobacteria in the North Pacific and Caribbean coasts of Costa Rica – Antonie van Leeuwenhoek, 96: 71-78.
  • 15. Gussow D., Clackson T. 1989 – Direct clone characterization from plaques and colonies by the polymerase chain reaction – Nucleic Acids Res. 17: 4000.
  • 16. Hansen A. A., Herbert R. A., Mikkelsen K., Jensen L. L., Kristoffersen T., Tiedje J. M., Lomstein B. A., Finster K. W. 2007 – Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway – Environ. Microbiol. 9: 2870-2884.
  • 17. Hentschel U., Schmid M., Wagner M., Fieseler L., Gernert C., Hacker J. 2001 – Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola – FEMS Microbiol. Ecol. 35: 305-312.
  • 18. Heo J., Cho H., Kim M. A., Hamada M., Tamura T., Saitou S., Kim S. J. K., Kwon S. W. 2020 – Microbacterium protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis – Int. J. Syst. Evol. Microbiol. 70: 2226-2232.
  • 19. Horneck G. 2000 – The microbial world and the case for Mars – Planet. Space Sci. 48: 1053-1063.
  • 20. Imhoff J. F., Stöhr R. 2003 – Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea – Prog. Mol. Subcell. Biol. 37: 35-57.
  • 21. Kimura M. 1980 – A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences – J. Mol. Evol. 16: 111-120.
  • 22. Kitagawa W., Tamura T. 2008 – Three types of antibiotics produced from Rhodococcus erythropolis strains – Microbes Environ. 23: 167-171.
  • 23. Kumar S., Stecher G., Tamura K. 2015 – MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets – Mol. Biol. Evol. 33: 1870-1874.
  • 24. Landgraf D., Scheuner E. T. 2005 – Estimation of microbial biomass nitrogen by chloroform fumigation extraction method in a forest soil – Arch. Agron. Soil Sci. 51: 571-577.
  • 25. Larkin M. J., Kulakov L. A., Allen C. C. 2005 – Biodegradation and Rhodococcus-masters of catabolic versatility – Curr. Opin. Biotechnol. 16: 282-290.
  • 26. Lazzarini A. L., Cavaletti G. T., Marinelli F. 2000 – Rare genera of actinobacteria as potential producers of new antibiotics – Antonie van Leeuwenhoek, 78: 399-405.
  • 27. Lewin G. R., Carlos C., Chevrette M. G., Horn H. A., McDonald B. R., Stankey R. J., Currie C. R. 2016 – Evolution and ecology of actinobacteria and their bioenergy applications – Annu. Rev. Microbiol. 70: 235-254.
  • 28. Li W. J., Schumann P., Zhang Y. Q., Xu P., Chen G. Z., Xu L. H., Stackebrandt E., Jiang C. L. 2005 – Proposal of Yaniaceae fam. nov. and Yania flava sp. nov. and emended description of the genus Yania – Int. J. Syst. Evol. Microbiol. 55: 1933-1938.
  • 29. Li W. J., Zhang Y. G. 2016 – Advances in studies on the genus of Nocardia – Microbiology China. 43: 1123-1135.
  • 30. Liu J. Y., Zheng G. W., Li C. X., Yu H. L., Pan J., Xu J. H. 2013 – Multi-substrate fingerprinting of esterolytic enzymes with a group of acetylated alcohols and statistic analysis of substrate spectrum – J. Mol. Catal. B-Enzym. 89: 41-47.
  • 31. Liu X., Cong J., Lu H., Xue Y. D., Wang X. L., Li D. Q., Zhang Y. G. 2017 – Community structure and elevational distribution pattern of soil actinobacteria in alpine grasslands – Acta Ecologica Sinica, 37: 213-218.
  • 32. Maya G., Gisha G., Hatha A. A. M. 2010 – Diversity and antibacterial activity of actinobacteria from wetland soil – The South Pacific Journal of Natural and Applied Sciences, 28: 52-57.
  • 33. Miao V., Davies J. 2010 – Actinobacteria: the good, the bad, and the ugly – Antonie van Leeuwenhoek, 98: 143-150.
  • 34. Mincer T. J., Jensen P. R., Kauffman C. A., Fenical W. 2002 – Widespread and persistent populations of a major new marine actinobacteria taxon in ocean sediments – Appl. Environ. Microbiol. 68: 5005-5011.
  • 35. Moncheva P., Tishkov S., Dimitrova N., Chipeva V., Antonova-Nikolova S., Bogatzevska N. 2002 – Characteristics of soil actinomycetes from Antarctica – J. Cul. Collect. 3: 3-14.
  • 36. O'Kelly B. C. 2004 – Accurate determination of moisture content of organic soils using the oven drying method – Drying Technol. 22: 1767-1776.
  • 37. Okoro C. K., Brown R., Jones A. L., Andrews B. A., Asenfo J. A., Goodfellow M., Bull A. T. 2009 – Diversity of culturable actinobacteria in hyper-arid soils of the Atacama Desert, Chile – Antonie van Leeuwenhoek, 95: 121-133.
  • 38. Olano C., Méndez C., Salas J. A. 2009 – Antitumor compounds from marine actinobacteria – Mar. Drugs. 7: 210-248.
  • 39. Pathom-aree W., Stach J. E. M., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006 – Diversity of actinobacteria isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench – Extremophiles, 10: 181-189.
  • 40. Piza F. F., Prado P. I., Manfio G. P. 2004 – Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity – Antonie van Leeuwenhoek, 86: 317-328.
  • 41. Qiu G. Q., Cheng G. D. 2010 – Permafrost in China: Past and present – Permafrost Periglac. 6: 3-14.
  • 42. Saitou N., Nei M. 1987 – The neighbor-joining method: a new method for reconstructing phylogenetic trees – Mol. Biol. Evol. 4: 406-425.
  • 43. Schloss P. D., Handelsman J. 2005 – Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness – Appl. Environ. Microbiol. 71: 1501-1506.
  • 44. Singh V., Haque S., Singh H., Verma J., Vibha K., Singh R., Jawed A., Tripathi C. K. M. 2016 – Isolation, screening, and identification of novel isolates of Actinomycetes from India for antimicrobial applications – Front. Microbiol. 7: 1921.
  • 45. Stach J. E. M., Bull A. T. 2005 – Estimating and comparing the diversity of marine actinobacteria – Antonie van Leeuwenhoek, 87: 3-9.
  • 46. Stach J. E. M., Maldonado L. A., Masson D. G., Ward A. C., Goodfellow M., Bull A. T. 2003a – Statistical approaches for estimating Actinobacterial diversity in marine sediments – Appl. Environ. Microbiol. 69: 6189-6200.
  • 47. Stach J. E. M., Maldonado L. A., Ward A. C., Goodfellow M., Bull A. T. 2003b – New primers for the class Actinobacteria: application to marine and terrestrial environments – Environ. Microbiol. 5: 828-841.
  • 48. Steven B., Briggs G., McKay C. P., Pollard W. H., Greer C. W., Whyte L. G. 2007 – Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods – FEMS Microbiol. Ecol. 59: 513-523.
  • 49. Steven B., Pollard W. H., Greer C. W., Whyte L. G. 2008 – Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic – Environ. Microbiol. 10: 3388-3403.
  • 50. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997 – The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools – Nucleic Acids Res. 25: 4876-4882.
  • 51. Vishnivetskaya T. A., Petrova M. A., Urbance J., Ponder M., Moyer C. L., Gilichinsky D. A., Tiedje J. M. 2006 – Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods – Astrobiology, 6: 400-414.
  • 52. Wallenstein M. D., McMahon S., Schimel J. 2007 – Bacterial and fungal community structure in Arctic tundra tussock and shrub soils – FEM Microbiol. Ecol. 59: 428-435.
  • 53. Webster N. S., Hill R. T. 2001 – The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by α-Proteobacterium – Mar. Biol. 138: 843-851.
  • 54. Wilhelm R. C., Niederberger T. D., Greer C., Whyte L. G. 2011 – Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic – Can. J. Microbiol. 57: 303-315.
  • 55. Wu J. Y., Guan T. W., Jiang H. C., Zhi X. Y., Tang S. K., Dong H. L., Zhang L. L., Li W. J. 2009 – Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China – Extremophiles, 13: 623-632.
  • 56. Xiang X. J., Shi Y., Yang J., Kong J. J., Lin X. G., Zhang H. Y., Zeng J., Chu H. Y. 2014 – Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest – Sci. Rep. 4: 3829.
  • 57. Xu L. H., Li Q. R., Jiang C. L. 1996 – Diversity of Soil Actinobacteria in Yunnan, China – Appl. Environ. Microbiol. 62: 244-248.
  • 58. Zhang B. L., Wu X. K., Tai X. S., Sun L. K., Wu M. H., Zhang W., Chen X. M, Zhang G. S., Chen T., Liu G. X., Dyson P. 2019 – Variation in Actinobacterial community composition and potential function in different soil ecosystems belonging to the Arid Heihe River Basin of northwest China – Front. Microbiol. 10: 1-11.
  • 59. Zhang B. L., Wu X. K., Zhang G. S., Li S. Y., Zhang W., Chen X. M., Sun L. K., Zhang B. G., Liu G. X., Chen T. 2016 – The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale – Environ. Res. Lett. 11: 1-12.
  • 60. Zhang G., Niu F., Ma X., Liu W., Dong M., Feng H., An L., Cheng G. 2007 – Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region – Can. J. Microbiol. 53: 1000-1010.
  • 61. Zhang H. T., Lee Y. K., Zhang W., Lee H. K. 2006 – Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis – Antonie van Leeuwenhoek, 90: 159-169.
  • 62. Zhang H. T., Zhang W., Jin Y., Jin M. F., Yu X. J. 2008 – A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species – Antonie van Leeuwenhoek, 93: 241-248.
  • 63. Zhang X. Y., He F., Wang G. H., Bao J., Xu X. Y., Qi S. H. 2013 – Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals – World J. Microbiol. Biotechnol. 29: 1107-1116.
  • 64. Zhang Y. Q., Liu H. Y., Chen J., Yuan L. J., Sun W., Zhang L. X., Zhang Y. Q., Yu L. Y., Li W. J. 2010 – Diversity of culturable actinobacteria from Qinghai-Tibet plateau, China – Antonie van Leeuwenhoek, 98: 213-223.
  • 65. Zhang Y. Q., Schumann P., Li W. J., Chen G. Z., Tian X. P., Stackebrandt E., Xu L. H., Jiang C. L. 2005 – Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China – Int. J. Syst. Evol. Microbiol. 55: 1867-1870.
  • 66. Zhao Q. G., Wang H. Q., Gu G. A. 1993 – [Gelisols of China] – Acta Pedol. Sin. 30: 341-354 (in Chinese, English summary).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-524ff034-f58f-4533-b2e8-0ea476bb1427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.