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Abstract
Mathematical modelling of textiles subjected to one-directional tensile forces is presented. 
The models include the straightening of fibres at the beginning, accompanied by the com-
pression of neighbouring fibres, and finally the elongation of the material of fibres when the 
straightening stops growing. As the result of fibres stretching, the transverse compressive 
forces hold all the fibres together and are responsible for maintaining the friction forces. 
Two models are proposed: the rhombus, representing perpendicular fibres, and the helix, 
representing parallel fibres. The final equations describing both models are found to be the 
same. Calculations demonstrating the behaviour of the model under dynamic loading were 
performed. The results are illustrated graphically and discussed.
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to their straightening becomes insignifi-
cant, the extension of the material of the 
fibres becomes dominant.

In formulating a mathematical model of 
a fibrous ordered structure subjected to 
one directional tension, it is symbolically 
represented by sequences of elements of 
pitch p. Two types of elements are con-
sidered: a rhombus, shown in Figure 1, 
and a helix, shown in Figure 2. The side 
of the rhombus is of length Lp/2, and that 
of the helix is equal to Lp. The rhombus 
represents a structure where fibres under 
tension are perpendicular to those sub-
jected to compression. The helix repre-
sents a structure where both fibres under 
tension as well as under compression are 
parallel one to another.

The rhombus is a flat structure and, as we 
can see from Figure 1, an increase in the 
pitch p by a value of y results in a de-
crease in the thickness h by a value of xh. 
The helix (Figure 2) is a spatial structure 
and an increase in the pitch p by a value 
of y causes a decrease in the diameter d 
by a value of xd.

For the rhombus (Figure 1), the square 
of the length of its side Lp/2 is equal to 
the sum of the squares of the two sides 
of the right triangle. Let the compression 
xh be a result of the elongation y, without 
changing the length Lp Equation (1).

Figure 2. Coil of a helix that changes the tensile force Fy into  compressive pressure fx; from 
left, respectively: non- distorted element,  scheme of the element for performing calculation in 

the state of elongation. 

For the rhombus (Figure 1), the square of the length of its side Lp/2 is equal to the sum 
of the squares of the two sides of the right triangle. Let the compression  xh be a result of the 
elongation y, without changing the length Lp (1).  

    
 
     

 
  

  
  

 
 

    
  
  

 
     

 
  

 
  

  
  

 
 

                   
                

(1) 

The dependence between the tensile force  Fy and  compressive force Fx can be found 
from the principle of virtual work (2). 

                       
(2) 

The length Lp of the coil of the helix (Figure 2) is equal to the diagonal of the 
rectangle, having sides equal to the circumference d of the cylinder and its height p. Let the 

 (1)

	 Introduction
The textiles which are under considera-
tion here are of ordered fibrous structure, 
which when subjected to tensile forces, 
causes the fibres constituting the struc-
ture to exert transverse pressure on each 
other, contributing to the development of 
the friction forces that prevent fibre slip-
page. These kinds of textiles have wide 
application in protective equipment, 
where they are used to reduce hazards. 
Usually they have the form of ropes [1, 2] 
or webbings [3]. The webbings are used 
for making body belts, safety harnesses 
and lanyards [4-6]. Fall protection equip-
ment is equipped with shock absorbers 
[7] and fall limiters. To make the decel-
eration of a falling body smoother, those 
textiles may be so designed as to make 
possible elongation larger than is usual. 
Studies of the behaviour of textiles sub-
jected to a tensile force can be found in 
papers [8, 9].

	 Mathematical models
An experimental study [1] of the elon-
gation of ropes under tensile forces 
showed that the breaking extension of 
ropes is several times greater than that 
of the fibres constituting ropes. This is 
because the fibres are not straight, but 
have curve form, and the elongation of 
the fibrous structure at the beginning is 
primarily a result of fibre straightening 
and changing fibre configuration. This 
phenomenon is accompanied by exerting 
transverse compressive forces on neigh-
bouring fibres, which keep all fibres to-
gether and are responsible for maintain-
ing friction forces. When the fibres get 
locked and hence further elongation due 

The dependence between the tensile 
force Fy and compressive force Fx can be 
found from the principle of virtual work 
Equation (2).

Figure 2. Coil of a helix that changes the tensile force Fy into  compressive pressure fx; from 
left, respectively: non- distorted element,  scheme of the element for performing calculation in 

the state of elongation. 

For the rhombus (Figure 1), the square of the length of its side Lp/2 is equal to the sum 
of the squares of the two sides of the right triangle. Let the compression  xh be a result of the 
elongation y, without changing the length Lp (1).  
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The dependence between the tensile force  Fy and  compressive force Fx can be found 
from the principle of virtual work (2). 
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The length Lp of the coil of the helix (Figure 2) is equal to the diagonal of the 
rectangle, having sides equal to the circumference d of the cylinder and its height p. Let the 

 (2)

The length Lp of the coil of the helix 
(Figure 2) is equal to the diagonal of 
the rectangle, having sides equal to the 
circumference πd of the cylinder and 
its height p. Let the elongation y of the 
helix be accompanied by the diameter d 
change of the value of xd. Introducing the 
same notation for the helix as previously 
for the rhombus and using the Pythago-
rean equation, we can find the depend-
ence between xd and y Equation (3a). By 
substituting d and xd, this relationship is 
takes the form Equation (3b), which is 
the same as (1).

elongation y of the helix be accompanied by the diameter d change of the value of xd.
Introducing the same notation for the helix as previously for the rhombus and using the 
Pythagorean equation, we can find the dependence between xd and y (3a). By substituting d
and xd , this relationship is takes the form (3b), which is the same as (1). 
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(3b) 

The dependence between the tensile force Fy and  compressive pressure fx can be 
found from the principle of virtual work (4a). By substituting  fx and xd , this relationship takes 
the form (4b), which the same as (2). 
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(4b) 

From equations (1,3b) and (2,4b) for both the rhombus and helix, we have the same 
relationships (5).  

                         
   
   

     
    

        

     
   
   

(5) 

Now we need to have the dependence between the compressive force and the 
magnitude of compression of fibres Fx=Fx(xh). It can be taken in from (6), as proposed in 
paper [10], where it was derived based on the observation that fibres with some curvature 
undergo  flattening under pressure. As a result, the fibres gradually come intto mutual contact, 
which makes their bending length shorter, and thus they become stiffer. In Equation 6
constants (k, L) define the transverse compression stiffness of the element of the fibrous 
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The dependence between the tensile force 
Fy and compressive pressure fx can be 
found from the principle of virtual work 
Equation (4a). By substituting fx and xd, 
this relationship takes the form Equation 
(4b), which the same as Equation (2).
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From Equations (1, 3b) and Equations 
(2, 4b) for both the rhombus and helix, 

Figure 2. Coil of a helix that changes the tensile force Fy into  compressive pressure fx; from 
left, respectively: non- distorted element,  scheme of the element for performing calculation in 

the state of elongation. 

For the rhombus (Figure 1), the square of the length of its side Lp/2 is equal to the sum 
of the squares of the two sides of the right triangle. Let the compression  xh be a result of the 
elongation y, without changing the length Lp (1).  
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The dependence between the tensile force  Fy and  compressive force Fx can be found 
from the principle of virtual work (2). 
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we have the same relationships Equa-
tion (5).
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  (5)

 

Now we need to have the dependence 
between the compressive force and the 
magnitude of compression of fibres  
Fx = Fx(xh). It can be taken in from (6), 
as proposed in paper [10], where it was 
derived based on the observation that 
fibres with some curvature undergo flat-
tening under pressure. As a result, the 
fibres gradually come into mutual con-
tact, which makes their bending length 
shorter, and thus they become stiffer. In 
Equation (6) constants (k, L) define the 
transverse compression stiffness of the 
element of the fibrous structure due to 
fibres bending. The values of (k, L) for 
the rhombus are different from those for 
the helix.

structure due to fibres bending. The values of (k, L) for the rhombus are different from those 
for the helix.  

   
   

     
  

         

(6) 

The extension ys of fibres, constituting an element of length p, under tensile force Fy
depends on the material from which they are made and can be expressed by formula (7), 
where cs is the fibre material’s internal damping coefficient and (ks, kj) are elasticity 
parameters defining the longitudinal tensile stiffness of the element of the fibrous structure. 

     
   
              

         

(7) 

The total elongation of the fibrous structure may be sought approximately as a sum of the 
increase due to the changing fibre configuration y and extension of the material of fibres ys
(8). 

                
  
  

(8) 

In formula (8)  LB denotes the length of the fibrous structure and np the number of elements, 
shown in Figures 1 or 2. Let us denote by Y the coordinate of mass m attached to the end of 
the fibrous structure. Let this mass fall down from above the end of the structure. If Y
becomes negative, then the structure is neither stretched nor compressed, but instead its end is 
above the position which it had at rest. The equation of motion of the mass m has the form (9). 
Besides the internal damping of the fibre material, there exists  damping resulting from the 
external friction between fibres, which is related to the compressive force Fx and  coefficient 
of the material friction  The damping is taken into account by including the friction force 
Fx multiplied by the damping coefficient cx for np elements. 
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Numerical calculations 

In order to investigate the dynamical behaviour of the model proposed, the set of 
differential equations derived was numerically integrated using the Runge-Kutta method. For 
this purpose, the following notation was introduced Y=Y1, dY/dt=Y2, ys=Y3 and the set of 
Equations 5-9 was rewritten in the form of algorithm (10). The integration was performed for 
various parameters,exemplary results of which are shown in Figure 3, obtained for the initial 
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The total elongation of the fibrous struc-
ture may be sought approximately as a 
sum of the increase due to the changing 
fibre configuration y and extension of the 
material of fibres ys Equation (8).
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In Equation (8) LB denotes the length 
of the fibrous structure and np the num-
ber of elements, shown in Figures 1 or 
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The extension ys of fibres, constituting an element of length p, under tensile force Fy
depends on the material from which they are made and can be expressed by formula (7), 
where cs is the fibre material’s internal damping coefficient and (ks, kj) are elasticity 
parameters defining the longitudinal tensile stiffness of the element of the fibrous structure. 
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The total elongation of the fibrous structure may be sought approximately as a sum of the 
increase due to the changing fibre configuration y and extension of the material of fibres ys
(8). 
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Figure 1. Rhombus that changes the tensile force Fy into a compressive force Fx, from the 
left, respectively: non – distorted element, compressed part of the element, scheme of the 
element for performing calculation in a state of elongation.

forces on neighbouring fibres, which keep all fibres together and  are responsible for 
maintaining friction forces. When the fibres get locked and hence further elongation due to 
their straightening becomes insignificant, the extension of the material of the fibres becomes 
dominant. 

In  formulating a mathematical model of a fibrous ordered structure subjected to one 
directional tension, it is symbolically represented by sequences of elements of pitch p. Two 
types of elements are considered: a rhombus, shown in Figure 1, and a helix, shown in 
Figure 2. The side of the rhombus is of length Lp/2, and that  of the helix is equal to Lp. The 
rhombus represents a structure where fibres under tension are perpendicular to those subjected 
to compression. The helix represents a structure where both fibres under tension as well as 
under compression are parallel one to another. 

The rhombus is a flat structure and, as we can see from Figure 1, an increase in the 
pitch p by a value of y results in a decrease in the thickness h by a value of  xh. The helix 
(Figure 2) is a spatial structure and an increase in the pitch p by a value of y causes a decrease 
in the diameter d by a value of xd. 

Figure 1. Rhombus that changes the tensile force Fy into a compressive force Fx, from the 
left, respectively: non - distorted element,  compressed part of the element,  scheme of the 

element for performing calculation in a state of  elongation. 

Figure 2. Coil of a helix that changes the 
tensile force Fy into compressive pressure 
fx; from left, respectively: non- distorted ele-
ment, scheme of the element for performing 
calculation in the state of elongation.

Figure 2. Coil of a helix that changes the tensile force Fy into  compressive pressure fx; from 
left, respectively: non- distorted element,  scheme of the element for performing calculation in 

the state of elongation. 

For the rhombus (Figure 1), the square of the length of its side Lp/2 is equal to the sum 
of the squares of the two sides of the right triangle. Let the compression  xh be a result of the 
elongation y, without changing the length Lp (1).  
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(2) 

The length Lp of the coil of the helix (Figure 2) is equal to the diagonal of the 
rectangle, having sides equal to the circumference d of the cylinder and its height p. Let the 

p
k

h

Lp / 2

Fx Fx Fx Fx

Lp / 2

Fy

p+y

Fy

h-xh

d-xdd
Fy

Lp Lp
p

p+y

Fy

fx

structure due to fibres bending. The values of (k, L) for the rhombus are different from those 
for the helix.  

   
   

     
  

         

(6) 

The extension ys of fibres, constituting an element of length p, under tensile force Fy
depends on the material from which they are made and can be expressed by formula (7), 
where cs is the fibre material’s internal damping coefficient and (ks, kj) are elasticity 
parameters defining the longitudinal tensile stiffness of the element of the fibrous structure. 

     
   
              

         

(7) 

The total elongation of the fibrous structure may be sought approximately as a sum of the 
increase due to the changing fibre configuration y and extension of the material of fibres ys
(8). 

                
  
  

(8) 

In formula (8)  LB denotes the length of the fibrous structure and np the number of elements, 
shown in Figures 1 or 2. Let us denote by Y the coordinate of mass m attached to the end of 
the fibrous structure. Let this mass fall down from above the end of the structure. If Y
becomes negative, then the structure is neither stretched nor compressed, but instead its end is 
above the position which it had at rest. The equation of motion of the mass m has the form (9). 
Besides the internal damping of the fibre material, there exists  damping resulting from the 
external friction between fibres, which is related to the compressive force Fx and  coefficient 
of the material friction  The damping is taken into account by including the friction force 
Fx multiplied by the damping coefficient cx for np elements. 

    
           

   
              

(9) 

Numerical calculations 

In order to investigate the dynamical behaviour of the model proposed, the set of 
differential equations derived was numerically integrated using the Runge-Kutta method. For 
this purpose, the following notation was introduced Y=Y1, dY/dt=Y2, ys=Y3 and the set of 
Equations 5-9 was rewritten in the form of algorithm (10). The integration was performed for 
various parameters,exemplary results of which are shown in Figure 3, obtained for the initial 

structure due to fibres bending. The values of (k, L) for the rhombus are different from those 
for the helix.  

   
   

     
  

         

(6) 

The extension ys of fibres, constituting an element of length p, under tensile force Fy
depends on the material from which they are made and can be expressed by formula (7), 
where cs is the fibre material’s internal damping coefficient and (ks, kj) are elasticity 
parameters defining the longitudinal tensile stiffness of the element of the fibrous structure. 

     
   
              

         

(7) 

The total elongation of the fibrous structure may be sought approximately as a sum of the 
increase due to the changing fibre configuration y and extension of the material of fibres ys
(8). 

                
  
  

(8) 

In formula (8)  LB denotes the length of the fibrous structure and np the number of elements, 
shown in Figures 1 or 2. Let us denote by Y the coordinate of mass m attached to the end of 
the fibrous structure. Let this mass fall down from above the end of the structure. If Y
becomes negative, then the structure is neither stretched nor compressed, but instead its end is 
above the position which it had at rest. The equation of motion of the mass m has the form (9). 
Besides the internal damping of the fibre material, there exists  damping resulting from the 
external friction between fibres, which is related to the compressive force Fx and  coefficient 
of the material friction  The damping is taken into account by including the friction force 
Fx multiplied by the damping coefficient cx for np elements. 

    
           

   
              

(9) 

Numerical calculations 

In order to investigate the dynamical behaviour of the model proposed, the set of 
differential equations derived was numerically integrated using the Runge-Kutta method. For 
this purpose, the following notation was introduced Y=Y1, dY/dt=Y2, ys=Y3 and the set of 
Equations 5-9 was rewritten in the form of algorithm (10). The integration was performed for 
various parameters,exemplary results of which are shown in Figure 3, obtained for the initial 



FIBRES & TEXTILES in Eastern Europe  2017, Vol. 25,  5(125)106

	 Discussion of results
A displacement of the mass greater than 
zero (Y > 0 Figures 3.a) is equal to the 
total extension of a fibrous structure of 
length LB. When it is negative (Y < 0), 
then the mass moves freely and the fi-
brous structure has its natural length.

From Figure 3.b we can see that the de-
pendence between the force Fy and the to-

tal extension (y + ys) of the fibrous element 
is nonlinear. Initially nonlinearity is due to 
the changing fibre configuration, and then 
with an increase in the elongation, it is due 
to the nonlinear characteristic of the fibre 
material. Material damping cs is respon-
sible for changing the force – elongation 
curve to an hysteresis loop.

The material extension ys (Figure 3.d) 
of fibres takes place mainly when the ex-

Figure 3. a) coordinate Y of the falling mass versus time t [s], b) tensile force Fy versus the 
total elongation of element y+ys, c) elongation of element y due to the straightening of fibres, 
and d) the material extension ys of the element of length p versus time t.

tension y (Figure 3.c) due to the straight-
ening of fibres stops increasing. This is 
because the decrease in the thickness x 
(Figures 1 and 2) is close to its limiting 
value, when the textile structure locks up.

Calculations showed that a decrease in 
stiffness resulted in an increase in exten-
sion Y and a decrease in the tensile force Fy.

	 Conslusions
The equations describing the relation be-
tween the tensile force and magnitude of 
the extension can take the same form for 
the rhombus model, representing perpen-
dicular fibres, and the helix model, repre-
senting parallel fibres.

The mathematical model which is elabo-
rated in this paper can be used for stud-
ying properties of the textile part of pro-
tective equipment, especially if the stud-
ies are followed by suitable experiments. 
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Figure 3. (a)  coordinate Y of the falling mass versus time t [s], (b)  tensile force Fy versus the 
total elongation of element y+ys, (c)  elongation of  element y due to the straightening of 

fibres, and (d) the material extension ys of the element of length p versus time t. 

Discussion of results 

A displacement of the mass greater than zero (Y>0 Figures 3a) is equal to the total 
extension of a fibrous structure of length LB. When it is negative (Y<0), then the mass  moves 
freely and the fibrous structure has its natural length.  

From Figure 3b we can see that the dependence between the force Fy and the total 
extension (y+ys) of the fibrous element is nonlinear. Initially nonlinearity is due to the 
changing fibre configuration, and then with an increase in the elongation, it is due to the 
nonlinear characteristic of the fibre material. Material damping cs is responsible for changing 
the force–elongation curve to an hysteresis loop. 

The material extension ys (Figure 3d) of fibres takes place mainly when the extension 
y (Figure 3c) due to the straightening of fibres stops  increasing. This is because the decrease 
in the thickness x (Figures 1 and 2) is close to its limiting value, when the textile structure  
locks up. 

Calculations showed that a decrease in stiffness resulted in an increase in extension Y
and a decrease in the tensile force Fy.  

Conclusion 
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total elongation of element y+ys, (c)  elongation of  element y due to the straightening of 

fibres, and (d) the material extension ys of the element of length p versus time t. 

Discussion of results 

A displacement of the mass greater than zero (Y>0 Figures 3a) is equal to the total 
extension of a fibrous structure of length LB. When it is negative (Y<0), then the mass  moves 
freely and the fibrous structure has its natural length.  

From Figure 3b we can see that the dependence between the force Fy and the total 
extension (y+ys) of the fibrous element is nonlinear. Initially nonlinearity is due to the 
changing fibre configuration, and then with an increase in the elongation, it is due to the 
nonlinear characteristic of the fibre material. Material damping cs is responsible for changing 
the force–elongation curve to an hysteresis loop. 

The material extension ys (Figure 3d) of fibres takes place mainly when the extension 
y (Figure 3c) due to the straightening of fibres stops  increasing. This is because the decrease 
in the thickness x (Figures 1 and 2) is close to its limiting value, when the textile structure  
locks up. 

Calculations showed that a decrease in stiffness resulted in an increase in extension Y
and a decrease in the tensile force Fy.  
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Equation (10).

conditions Y1(0)=0, Y2(0)=(2gly)0.5& Y3(0)=0, the falling mass m=60 kg, gravity acceleration 
g=9.81 m/s2, the length of the fibrous structure LB=5 m, the falling height of the mass attached 
to the end of the textile structure ly=1 m, the parameters of the fibrous structure elements 
L=0.006 m, d=0.012 m, p=0.072 m, h=d & Lp=(h2+p2)0.5, the friction coefficient of the fibre 
material =0.2,  the coefficient of the influence of the friction on the damping cx= 0.01, the 
longitudinal tensile stiffness of the element ks=2700000 N/m, the nonlinear stiffness 
coefficient kj=5000 N1/3m-1, nonlinearity exponent j=3, the transverse compression stiffness of 
the element due to fibre bending k=785 N/m, and the material damping coefficient 
cs=10000 Ns/m. Because of the limitations of xh and y in Equations 5 and 6, a sufficiently 
small time step of the integration must be carefully chosen;  herein it was 0.0001s.  
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