PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composites Based on Poly-e-Caprolactone and Calcium Alginate Fibres Containing Ceramic Nanoadditives for Use in Regenerative Medicine

Identyfikatory
Warianty tytułu
PL
Kompozyty na bazie poli-e-kaprolakton i włókien alginianu wapnia zawierające ceramiczne do użytku w nanododatków medycyny regeneracyjnej
Języki publikacji
EN
Abstrakty
EN
The aim of the present work was to develop new composite materials based on two biocompatible polymers (sodium alginate and polycaprolactone) intended for use in the treatment of bone tissue defects. Tests carried out to obtain polymer-fibre composites using two resorbable polymers demonstrated the possibility of attaining composites with mechanical properties that are suitable from the point of view of their applications. Young’s modulus values for the composite systems analysed (254-389 MPa) are higher than for an unmodified PCL sheet. Irrespective of the fibrous phase used, the PCL matrix demonstrates stability in in vitro conditions. The constant pH values and small changes in the ionic conductance of the water indicate that these materials undergo gradual but slow degradation.
PL
W pracy opracowano warunki wytwarzania kompozytów opartych o dwa biodegradowalne tworzywa. Przeprowadzone badania wykazały zróżnicowany wpływ obecności poszczególnych rodzajów fazy włóknistej na właściwości wytrzymałościowe, właściwości fizykochemiczne powierzchni oraz stabilność materiałów kompozytowych podczas procesu inkubacji w warunkach in vitro. W oparciu o uzyskane wyniki można przypuszczać, iż wytworzone materiały kompozytowe na bazie włókien alginianowych, będących nośnikami substancji czynnych, będą powodować wytworzenie dogodnych warunków do krystalizacji apatytu w żywym organizmie.
Rocznik
Strony
17—21
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., tab.
Twórcy
autor
  • Poland, Łódź, Technical University of Łódź, Faculty of Material Technologies and Textile Design, Department of Man-Made Fibres
autor
  • Poland, Kraków, AGH – University of Science and Technology, Faculty of Materials Engineering and Ceramics, Department of Biomaterials
autor
  • Poland, Kraków, AGH – University of Science and Technology, Faculty of Materials Engineering and Ceramics, Department of Biomaterials
  • Poland, Kraków, CMUJ - Jagiellonian University Medical Collage, Faculty of Pharmacy, Department of Cytologyge
  • Poland, Kraków, University School of Physical Educationg, Faculty of Rehabilitation, Department of Physiotherapy
Bibliografia
  • 1. Müller F. A., Müller L., Hofmann I., Wenzel M. M., Staudenmaier R.; Cellulose-based scaffold materials for cartilage tissue engineering, Biomaterials Vol. 27, 2006, pp. 3955-3963.
  • 2. Boucard N., Viton Ch., Agay D., Mari E., Roger T., Chancerelle Y., Domard A.; The use of physical hydrogels of chitosan for skin regeneration following third-degree burns, Biomaterials Vol. 28, 2007, pp. 3478-3488.
  • 3. Pamuła E.; Biomateriały dla inżynierii tkankowej. Badania nad kształtowaniem struktury i właściwości biologicznych poliestrów alifatycznych, P r a c e m o n o g r a f i c z n e A G H K r a - ków, Wydział Inżynierii Materiałowej i Ceramiki, Kraków, Vol. 1, 2008.
  • 4. Shikinami Y., Matsusue Y., Nakamura T.; The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/ PLLA), Biomaterials Vol. 26, 2005, pp. 5542-5551.
  • 5. Polyak B., Geresh S., Marks R. S.; Synthesis and Characterization of a Biotin- Alginate Conjugate and Its Application in Biosensor Construction, Biomacromolecules Vol. 5, 2004, pp. 389-396.
  • 6. Abu-Rabeah K., Polyak B., Ionescu R. E., Cosnier S., Marks R. S.; Synthesis and Characterization of a Pyrrole-Alginate Conjugate and Its Application in a Biosensor Construction, Biomacromolecules Vol. 6, 2005, pp. 3313-3318.
  • 7. Martinsen A., Skjåk-Bræk G., Smidsrød O., Zanetti F., Paoletti S.; Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates, Carbohydr. Polym. Vol. 15, 1991, pp. 171-193.
  • 8. Hench L. L., Jones J. R.; Biomaterials, artificial organs and tissue engineering, Woodhead Publishing Limited, Cambridge, 2005.
  • 9. Hashimoto T., SuzukiY., Tanihara M., Kakimaru Y., Suzuki K.; Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin, Biomaterials Vol. 25, 2004, pp. 1407-1414.
  • 10. Mikołajczyk T., Boguń B., Rabiej S., Król P. “Zinc Alginate Fibres Containing Nanosilica” Fibres & Textiles in Eastern Europe Vol. 18, No. 6(83), 2010, pp. 39-44.
  • 11. Chung T. W., Yang J., Akaike T., Cho K. Y., Nah J. W., Kim S. II, Cho Ch. S.; Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment, Biomaterials Vol. 23, 2002, pp. 2827-2834.
  • 12. Boguń M., Mikołajczyk T.; “Sorption and Tensile Strength Properties of Selected Fibres of Cupric Alginate” Fibres&Textiles in Eastern Europe Vol. 16, No. 4(69), 2008, pp. 39-42.
  • 13. Woodruff M. A., Werner-Hutmacher D.; The return of a forgotten polymer—Polycaprolactone in the 21st century, Prog Polym Sci, 2010.
  • 14. http://www.osteopore.com.sg/index.htm
  • 15. Klopp L. S., Simon B. J., Bush J. M., Enns R. M., Turner A. S.; Comparison of a caprolactone/lactide film (Mesofol) to two polylactide film products as a barrier to postoperative peridural adhesion in an ovine dorsal laminectomy model, Spine, Vol. 33, 2008, pp. 1518-26.
  • 16. Ying W., Hua W., Xiaoying C., Siqin D.; Compressive mechanical properties and biodegradability of porous poly(caprolactone)/ chitosan scaffolds. Polymer Degradation and Stability, Vol. 93, 2008, pp. 1736-1741.
  • 17. Bertleff M., Meek M. F., Nicolai J. P. A.; A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand, J Hand Surg Am, Vol. 30A, 2005, pp. 513–8.
  • 18. Haberko K., Haberko M., Pyda W., Pędzich Z., Chłopek J., Mozgawa W., Bućko M., Sawicki B.; Patent nr PL 202549 B1, 2009.
  • 19. Boguń M., Mikołajczyk T., Rabiej S.; Effect of formation conditions on the structure and properties of nanocomposite alginate fibers, J. App. Polym. Sci. Vol. 114, 2009, pp. 70-82.
  • 20. Boguń M., Rabiej S.; The influence of fiber formation an the structure and properties of nanocomposite alginate fibers containing tricalcium phosphate or montmorillonite, Polym. Compos. Vol. 31, 2010, pp. 1321-1331.
  • 21. Boguń M., “Nanocomposite Calcium Alginate Fibres containing SiO2 and Bioglass” Fibres & Textiles in Eastern Europe Vol. 18, No. 4(81), 2010, pp. 11-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-524a1902-f5e8-4745-be8a-a28d273d68d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.