Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Majority of combustion engines is produced (poured) from Al-Si alloys with low thermal expansion coefficient, so called piston silumins. Hypereutectic alloys normally contain coarse, primary angular Si particles together with eutectic Si phase. The structure and mechanical properties of these alloys are highly dependent upon cooling rate, composition, modification and heat-treatment operations. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis) and regression analysis to assessment of quality of the AlSi21CuNi alloy modified with Cu-P on stage of its preparation, in aspect of obtained mechanical properties (R0,02, Rm, A5, HB). Obtained dependencies enable prediction of mechanical properties of the investigated alloy in laboratory conditions, using values of characteristic points from curves of the ATND method.
Czasopismo
Rocznik
Tom
Strony
87--92
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
- Faculty of Chipless Forming Technology, University of Bielsko-Biała, Willowa 2, 43-309 Bielsko - Biała, Poland
Bibliografia
- [1] Gruzleski, J.E., Closset, B.M. (1990). The Treatment of Liquid Aluminum-Silicon Alloys. American Foundrymen's Society.
- [2] Nafisi, S., Hedjazi, J., Boutorab, S.M. & Ghomashchi, R. (2004). Factors influencing the modification and refinement of hypereutectic Al-Si alloys for production of automotive pistons. TMS Light Metals. 851-856.
- [3] Ye, H. (2003). An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications. Journal of Materials Engineering and Performance. 12(3), 288-297.
- [4] Pietrowski, S. (1997). Piston silumins. Katowice. PAN Solidification of metals and alloys. 29, Monography.
- [5] Cole, G.S. & Sherman, A.M. (1995). Light weight materials for automotive applications. Materials Characterization. 35(1), 3-9.
- [6] Jorstad, J. & Apelian, D. (2009). Hypereutectic Al-Si Alloys: Practical Casting Considerations. International Journal of Metalcasting. 3(3), 13-36.
- [7] Al-Helal, K., Stone, I.C. & Fan, Z. (2012). Simultaneous Primary Si Refinement and Eutectic Modification in Hypereutectic Al-Si Alloys. Transactions of the Indian Institute of Metals. 65(6), 663-667. DOI: 10.1007/s12666-012-0171-4.
- [8] Birol, Y. (2008). Processing of Hypereutectic AlSiCuFe Alloys in the Semi-Solid State. Solid State Phenomena. 141-143, 587-592. DOI: 10.4028/www.scientific.net/SSP.
- [9] Kapranos, P., Kirkwood, D.H. & Atkinson, A.V. et al. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. Journal of Materials Processing Technology. 135(2-3), 271-277. DOI: 10.1016/S0924-0136(02)00857-9.
- [10] Ohmi, T., Kudoh, M. & Ohsasa, K. (1992). Effect of Casting Condition on Refinement of Primary Crystals in Hypereutectic Al-Si Alloy Ingots Produced by Duplex Casting Process. Journal of the Japan Institute of Metals. 56, 1064-107.
- [11] Jorstad, J.L. (2006). Future Technology in Die Casting. Die Casting Engineer. 18-25.
- [12] Kurita, H., Yamagata, H., Arai, H. & Nakamura, T. (2004). Hypereutectic Al-20%Si Alloy Engine Block Using High-Pressure Die-Casting. SAE Technical Paper 2004-01-1028. DOI:10.4271/2004-01-1028.
- [13] Davis, J.R. (1993). Aluminium and aluminium alloys. ASM Speciality Handbook, ASM International.
- [14] Tanaka, T. & Akasawa, T. (1999). Machinability of hypereutectic silicon-aluminum alloys. Journal of Materials Engineering and Performance. 8(4), 463-468. DOI: 10.1361/105994999770346774.
- [15] Delshad-Khatibi, P. & Akhlaghi, F. (2008). Ultrafine Primary Silicon Particles in Phosphorus-modified Hypereutectic Al-Si alloy Powders Produced by SAMD method. International Journal of Modern Physics B. 22(18/19), 3304-3310.
- [16] Poniewierski, Z. (1989). Crystallization, structure and properties of silumins. Warszawa: WNT.
- [17] Wasilewski, P. (1993). Silumins - Modification and its impact on structure and properties. Katowice. PAN Solidification of metals and alloys. 21, Monography.
- [18] Pezda, J. (2011). The modification process of AlSi21CuNi silumin and its effect on change of mechanical properties of the alloy. Archives of Foundry Engineering. 11(2), 101-104.
- [19] Piątkowski, J. (2009). The phosphorus interaction on the process forming of primary structure of hypereutectic silumins. Archives of Foundry Engineering. 9(3), 125-128.
- [20] Romankiewicz, F., Romankiewicz, R. & Michalski, M. (2004). Effect of modification on structure and morphology of AK20 silumin fractures. Archives of Foundry. 4(11), 141-146.
- [21] Kyffin, W.J., Rainforth, W.M. & Jones, H. (2001). Formation of primary silicon during cooling and solidification of Al-20%Si alloy. Materials Transaction. 42(10), 2098-2101.
- [22] Wu, Y., Wang, S., Li, H. & Liu, X. (2009). A new technique to modify hypereutectic Al–24%Si alloys by a Si–P master alloy. Journal of Alloys and Compounds. 477(1-2), 139-144. DOI: 10.1016/j.jallcom.2008.10.015.
- [23] Pezda, J. (2009). Crystallization of ultra-light alloys on base of magnesium and lithium. Advances in Manufacturing Science and Technology. 32(2), 55-64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52492980-45a4-4a1d-8e7d-6f529a27defe