PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Effect on Buckling Properties of Thin-Walled Composite Profile Subjected to Axial Compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the influence of temperature variations on the buckling properties of thin-walled omega-profiles fabricated from carbon-epoxy composite materials. Utilizing a MTS testing machine, compression tests were conducted on these profiles at temperatures ranging from -20°C to 80°C, in 20°C increments. The primary objective was to assess how temperature fluctuations impact the buckling load and load-bearing capacity of these composite profiles under axial compression. The experimental setup allowed for precise measurement of load-displacement and load-deflection characteristics, and the critical load at which buckling initiation occurred. Observations revealed that the buckling resistance of the profiles exhibited a complex dependence on temperature. At lower temperatures, the composite material demonstrated enhanced stiffness and strength, marginally increasing buckling resistance. Conversely, at elevated temperatures, a noticeable degradation in mechanical properties was observed, leading to a reduced buckling load and altered failure modes. To complement the experimental findings, a comprehensive finite element (FE) analysis was conducted for sample in room temperature. The FE model, developed to replicate the experimental conditions closely, employed an eigenvalue-based approach to predict the buckling initiation and progression accurately. The presented results are the results of only preliminary tests and they will be expand about more samples number as well as to determine material properties for various temperatures.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Department of Organisation of Enterprise, Białystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, aleja Powstanców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Puig L., Barton A., Rando N. A review on large de ployable structures for astrophysics missions. Acta Astronautica. 2010; 67(1–2): 12–26.
  • 2. Kopecki T., Mazurek P., Lis T. Experimental and Numerical Analysis of a Composite Thin-Walled
  • Cylindrical Structures with Different Variants of Stiffeners, Subjected to Torsion. Materials. 2 październik 2019; 12(19): 3230.
  • 3. Czyż Z, Podolak P, Skiba K, Jakubczak P, Karpiński P, Różylo P, i in. Autogyro Main Rotor Blade Strength Tests. In: 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) [Inter¬net]. Milan, Italy: IEEE; 2023; 199–204. Available at: https://ieeexplore.ieee.org/document/10190031/
  • 4. Kopecki H, Święch Ł. Experimental investiga¬tion of limit load of composite sandwich plate with cut-out. In: Pietraszkiewicz W, Witkowski W, (Eds.). Shell Structures: Theory and Ap¬plications Volume 4 [Internet]. 1. wyd. CRC Press; 2017; 425–8. Available at: https://www. taylorfrancis.com/books/9781351680486/ chapters/10.1201/9781315166605-97
  • 5. Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, Rucka M, Sobczyk B, Wilde K. Modal properties identification of a novel sandwich footbridge – Com¬parison of measured dynamic response and FEA. Composites Part B: Engineering. 2018; 151: 245–55.
  • 6. Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, Sob¬czyk B, Wilde K. A novel sandwich footbridge - Prac¬tical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B: Engineering. 2017; 126: 153–61.
  • 7. Tamayo-Avendaño JM, Patiño-Arcila ID, Nieto- Londoño C, Sierra-Pérez J. Fluid-structure interac¬tion analysis of a wind turbine blade with passive control by bend-twist coupling. Energies. 2023; 16(18): 6619.
  • 8. Mikhail AE, El Damatty AA. Non-linear analysis of FRP chimneys under thermal and wind loads. Thin- Walled Structures. 1999; 35(4): 289–309.
  • 9. El Damatty AA, Awad AS, Vickery BJ. Thermal analy¬sis of FRP chimneys using consistent laminated shell element. Thin-Walled Structures. 2000; 37(1): 57–76.
  • 10. Ko L. Predictions of Thermal Buckling Strengths of Hypersonic Aircraft Sandwich Panels Using Minimum Potential Energy and Finite Element Methods. 1995.
  • 11. Wysmulski P. Load Eccentricity of compressed composite z-columns in non-linear state. Materi¬als. 2022; 15(21): 7631.
  • 12. Falkowicz K, Debski H. The post-critical behaviour of compressed plate with non-standard play orienta¬tion. Composite Structures. 2020; 252: 112701.
  • 13. Golewski P, Sadowski T, Kneć M, Budka M. The effect of thermal aging degradation of CFRP com¬posite on its mechanical properties using destructive and non-destructive methods and the DIC system. Polymer Testing. 2023; 118: 107902.
  • 14. Dimitrienko YuI. Thermomechanical behaviour of composite materials and structures under high temperatures: 1. Materials. Composites Part A: Applied Science and Manufacturing. 1997; 28(5): 453–61.
  • 15. Hu C, Xu Z, Qiu J, Wu S, Wang R, He X. A unified modeling strategy of the stability and progressive damage behavior of CFRP double-blade composite stiffened structures (DCSS) under uniaxial compression. Thin-Walled Structures. 2023; 189: 110896.
  • 16. Noor AK, Burton WS. Computational models for high-temperature multilayered composite plates and shells. Applied Mechanics Reviews. 1992; 45(10): 419–46.
  • 17. Uematsu Y, Kitamura T, Ohtani R. Delamination behavior of a carbon-fiber-reinforced thermoplastic polymer at high temperatures. Composites Science and Technology. 1995; 53(3): 333–41.
  • 18. Rzeczkowski J, Samborski S, Valvo PS. Effect of stiffness matrices terms on delamination front shape in laminates with elastic couplings. Composite Structures. 2020; 233: 111547.
  • 19. Tompkins SS. Thermal expansion of selected graphite reinforced polyimide-, epoxy-, and glass-matrix composite.
  • 20. Gotsis PK, Guptill JD. Fiber composite thin shells subjected to thermal buckling loads. Computers & Structures. 1994; 53(6): 1263–74.
  • 21. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures. 2023; 305: 116474.
  • 22. Falkowicz K. Numerical Investigations of perforated CFRP Z-cross-section profiles, under axial compression. Materials. 2022; 15(19): 6874.
  • 23. Kubit A, Święch Ł, Trzepieciński T, Faes K. Experimental analysis of the post-buckling behaviour of compressed stiffened panel with refill friction stir spot welded and riveted stringers. Adv Sci Technol Res J. 2022; 16(2): 159–67.
  • 24. Różyło P, Debski H. Stability and load carrying capacity of thin-walled composite columns with square cross-section under axial compression. Composite Structures. 2024; 329: 117795.
  • 25. Sabik A, Kreja I. Numerical analysis of laminated shells under in‐plane axial compression. Proc Appl Math and Mech. 2009; 9(1): 251–2.
  • 26. Al-Hassani STS, Darvizeh M, Haftchenari H. An analytical study of buckling of composite tubes with various boundary conditions. Composite Structures. 1997; 39(1–2): 157–64.
  • 27. Wysmulski P, Teter A, Debski H. Effect of load eccentricity on the buckling of thin-walled laminated C-columns. W Lublin, Poland; 2018; 080008. Available at: https://pubs.aip.org/aip/acp/article/608531
  • 28. Pietraszkiewicz W, Kreja I, redaktorzy. Shell Structures: Theory and Applications (Vol. 2): Proceedings of the 9th SSTA Conference, Jurata, Poland, 14-16 October 2009 [Internet]. CRC Press; 2009. Available at: http://wwwcrcnetbase.com/doi/book/10.1201/9780203859766
  • 29. Kubiak T, Urbaniak M, Kazmierczyk F. The influence of the layer arrangement on the distortional post-buckling behavior of open section beams. Materials. 2020; 13(13): 3002.
  • 30. Falkowicz K, Debski H. Stability analysis of thin- walled composite plate in unsymmetrical configura- tion subjected to axial load. Thin-Walled Structures. 2021; 158: 107203.
  • 31. Falkowicz K, Valvo P. Influence of composite lay-up on the stability of channel-section profiles weakened by cut-outs – a numerical investigation. Adv Sci Technol Res J. 2023; 17(1): 108–15.
  • 32. Falkowicz K. Effect of cut-out radius for behaviour of symmetrically laminated plates. J Phys: Conf Ser. 2021; 1736: 012030.
  • 33. Rozylo P, Rogala M, Pasnik J. Buckling analysis of thin-walled composite structures with rectangular cross-sections under compressive load. Materials. 2023; 16(21): 6835.
  • 34. Banat D, Mania R. Failure analysis of thin-walled GLARE members during buckling and post-buckling response. W Zakopane, Poland; 2019; 020001. Available at: https://pubs.aip.org/aip/acp/article/736694
  • 35. Bai J, Xiong J. Temperature effect on buckling properties of ultra-thin-walled lenticular collapsible composite tube subjected to axial compression. Chinese Journal of Aeronautics. 2014; 27(5): 1312–7.
  • 36. Hu L, Liang X, Feng P, Li HT. Temperature effect on buckling behavior of prestressed CFRP-reinforced steel columns. Thin-Walled Structures. 2023; 188: 110879.
  • 37. Tauchert TR. Thermal buckling of thick antisym- metric angle-ply laminates. Journal of Thermal Stresses. 1987; 10(2): 113–24.
  • 38. York CB, Lee KK. Test validation of extension-twisting coupled laminates with matched orthotropic stiffness. Composite Structures. 2020; 242: 112142.
  • 39. York CB. Tapered hygro-thermally curvature-stable laminates with non-standard ply orientations. Composites Part A: Applied Science and Manufacturing. 2013; 44: 140–8.
  • 40. Falkowicz K. Validation of extension-bending and extension-twisting coupled laminates in elastic element. Adv Sci Technol Res J. 2023; 17(3): 309–19.
  • 41. Falkowicz K, Debski H, Wysmulski P. Effect of extension-twisting and extension-bending coupling on a compressed plate with a cut-out. Composite Structures. 2020; 238: 111941.
  • 42. Cross RJ, Haynes RA, Armanios EA. Families of hygrothermally stable asymmetric laminated composites. Journal of Composite Materials. 2008; 42(7): 697–716.
  • 43. Lusiak T, Knec M. Use of ARAMIS for fatigue process control in the accelerated test for composites. transportation research procedia. 2018; 35: 250–8.
  • 44. Charchalis A, Kneć M, Żuk D, Abramczyk N. Use of 3D optical techniques in the analysis of the effect of adding rubber recyclate to the matrix on selected strength parameters of epoxy-glass composites. Acta Mechanica et Automatica. 2023; 17(3): 333–46.
  • 45. Paszkiewicz M, Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures. 2015; 93: 112–21.
  • 46. Jonak J, Karpiński R, Wójcik A. Numerical analysis of undercut anchor effect on rock. J Phys: Conf Ser. 2021; 2130(1): 012011.
  • 47. Jonak J, Karpiński R, Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser. 2021; 2130(1): 012012.
  • 48. Ferdynus M, Rogala M. Numerical crush analysis of thin-walled aluminium columns with square cross- section and a partial foam filling. Adv Sci Technol Res J. 2019; 13(3): 144–51.
  • 49. Kopecki T, Święch Ł. Experimental-numerical analysis of a flat plate subjected to shearing and manufactured by incremental techniques. Adv Sci Technol Res J. 2023; 17(4): 179–88.
  • 50. Grzes P, Kuciej M. Coupled thermomechanical FE model of a railway disc brake for friction material wear calculations. Wear. 2023; 530–531: 205049.
  • 51. Święch Ł. Experimental and numerical studies of low-profile, triangular grid-stiffened plates subjected to shear load in the post-critical states of deformation. Materials. 2019; 12(22): 3699.
  • 52. Święch Ł. Finite element analysis of stress distribution in the node region of isogrid thin-walled panels. In: Mężyk A, Kciuk S, Szewczyk R, Duda S, (Eds.). Modelling in Engineering 2020: Applied Mechanics [Internet]. Cham: Springer International Publishing; 2021; 279–88. (Advances in Intelligent Systems and Computing; t. 1336). Available at: http://link. springer.com/10.1007/978-3-030-68455-6_25
  • 53. Wysmulski P, Falkowicz K, Filipek P. Buckling state analysis of compressed composite plates with cutout. Composite Structures. 2021; 274: 114345.
  • 54. Falkowicz K, Wysmulski P, Debski H. Buckling analysis of laminated plates with asymmetric layup by approximation method. Materials. 2023; 16(14): 4948.
  • 55. Wysmulski P, Debski H, Falkowicz K. Sensitivity of compressed composite channel columns to eccentric loading. Materials. 2022; 15(19): 6938.
  • 56. Falkowicz K, Kulisz M. Prediction of buckling behaviour of composite plate element using artificial neural networks. Adv Sci Technol Res J. 2024; 18(1): 231–43.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-523febc6-8dfd-49d3-a026-a42bcef9fec2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.