PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Numerical Study of Effects of Valley-Weathering and Valley-Shape-Ratio on the Ground Motion Characteristics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study of combined effects of valley-weathering and valley-shaperatio on the ground motion characteristics and associated differential ground motion (DGM) is documented in this paper. In order to properly quantify the weathering effects, a forth-order-accurate staggered-grid viscoelastic time-domain finite-difference program has been used for the simulation of SH-wave responses. Simulated results revealed that the defocusing caused by valley is frequency-independent in contrast to the ridge-focusing. A decrease of average spectral amplification (ASA) with an increase of shape-ratio of the non-weathered triangular and elliptical valleys was obtained. Overall, the amplification and de-amplification pattern was larger in case of triangular valleys as compared to the elliptical valleys. It can be concluded that the dwelling within or near the topcorners of weathered valleys may suffer more damage as compared to their surroundings. A weathered triangular valley with large shape-ratio may cause unexpected damage very near its top-corners since both the ASA and DGM are largest.
Czasopismo
Rocznik
Strony
154--175
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
Bibliografia
  • [1] Boore, D.M. (1972), Finite difference methods for seismic wave propagation in heterogeneous materials. In: B.A. Bolt, B. Adler, S. Fernbach, and M. Rotenberg (eds.), Methods in Computational Physics, Seismology: Surface Waves and Earth Oscillations, Vol. 11, Academic Press, New York, 1-37.
  • [2] Bouchon, M. (1985), A simple, complete numerical solution to the problem of diffraction of SH-waves by an irregular surface, J. Acoustic. Soc. Am. 77, 1, 1-5, DOI: 10.1121/1.392258.
  • [3] Clayton, R., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 67, 6, 1529-1540.
  • [4] Emmerich, H., and M. Korn (1987), Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics 52, 9, 1252-1264, DOI:10.1190/1.1442386.
  • [5] Faccioli, E. (1991), Seismic amplification in the presence of geological and topographic irregularities. In: Proc. 2nd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 11-15 March 1991, St. Louis, Missouri, USA, 1779-1797.
  • [6] Gao, Y., N. Zhang, D. Li, H. Liu, Y. Cai, and Y. Wu (2012), Effects of topographic amplification induced by U-shaped canyon on seismic waves, Bull. Seismol. Soc. Am. 102, 4, 1748-1763, DOI: 10.1785/0120110306.
  • [7] Geli, L., P.Y. Bard, and B. Jullien (1988), The effect of topography on earthquake ground motion: A review and new results, Bull. Seismol. Soc. Am. 78, 1, 42-63.
  • [8] Hirai, H. (1988), Analysis of transient response of SH wave scattering in half space by the boundary element method, Eng. Anal. 5, 4, 189-194, DOI: 10.1016/0264-682X(88)90015-9.
  • [9] Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comput. Phys. 41, 1, 115-135, DOI: 10.1016/0021-9991(81)90082-6.
  • [10] Kamalian, M., M.K. Jafari, A. Sohrabi-Bidar, A. Razmkhah, and B. Gatmiri (2006), Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method, Soil Dyn. Earthq. Eng. 26, 8, 753-765, DOI: 10.1016/j.soildyn.2005.12.008.
  • [11] Kawase, H., and K. Aki (1990), Topography effect at the critical SV-wave incidence: Possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987, Bull. Seismol. Soc. Am. 80, 1, 1-22.
  • [12] Kristek, J., and P. Moczo (2003), Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finitedifference modeling, Bull. Seismol. Soc. Am. 93, 5, 2273-2280, DOI:10.1785/0120030023.
  • [13] Kumar, S., and J.P. Narayan (2008), Absorbing boundary conditions in a fourthorder accurate SH-wave staggered grid finite difference algorithm, Acta Geophys. 56, 4, 1090-1108, DOI: 10.2478/s11600-008-0043-9.
  • [14] Kumar, V., and J.P. Narayan (2013), Study of combined effects of sediment rheology and anticlinal basement topography on ground motion characteristics, Geofizika 30, 1, 75-93.
  • [15] Lee, S.J., D. Komatitsch, B.S. Huang, and J. Tromp (2009), Effects of topography on seismic-wave propagation: An example from northern Taiwan, Bull. Seismol. Soc. Am. 99, 1, 314-325, DOI:10.1785/0120080020.
  • [16] Moczo, P., J. Kristek, V. Vavryčuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am. 92, 8, 3042-3066, DOI: 10.1785/0120010167.
  • [17] Narayan, J.P. (2003), Simulation of ridge-weathering effects on the ground motion characteristics, J. Earthq. Eng. 7, 3, 447-461, DOI: 10.1080/13632460309350458.
  • [18] Narayan, J.P., and S. Kumar (2008), A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique, Pure Appl. Geophys. 165, 2, 271-294, DOI:10.1007/s00024-008-0298-8.
  • [19] Narayan, J.P., and V. Kumar (2013), A fourth-order accurate finite-difference program for the simulation of SH-wave propagation in heterogeneous viscoelastic medium, Geofizika 30, 2, 173-189.
  • [20] Narayan, J.P., and V. Kumar (2014), Study of combined effects of sediment rheology and basement focusing in an unbounded viscoelastic medium using P-SV-wave finite-difference modelling, Acta Geophys., DOI: 10.2478/s11600-013-0199-9.
  • [21] Narayan, J.P., and P.V. Prasad Rao (2003), Two and half dimensional simulation of ridge effects on the ground motion characteristics, Pure Appl. Geophys. 160, 8, 1557-1571, DOI: 10.1007/s00024-003-2360-x.
  • [22] Narayan, J.P., and D.C. Rai (2001), An observational study of local site effects in Chamoli earthquake. In: Proc. Workshop on Recent Earthquakes of Chamoli and Bhuj, 22-23 May 2001, Roorkee, India, Indian Society of Earthquake Technology, 273-280.
  • [23] Nguyen, K.V., and B. Gatmiri (2007), Evaluation of seismic ground motion induced by topographic irregularity, Soil Dyn. Earthq. Eng. 27, 2, 183-188, DOI:10.1016/j.soildyn.2006.06.005.
  • [24] Pedersen, H., B. Le Brun, D. Hatzfeld, M. Campillo, and P.Y. Bard (1994), Groundmotion amplitude across ridges, Bull. Seismol. Soc. Am. 84, 6, 1786-1800.
  • [25] Sánchez-Sesma, F.J., and M. Campillo (1991), Diffraction of P, SV, and Rayleigh waves by topographic features: A boundary integral formulation, Bull. Seismol. Soc. Am. 81, 6, 2234-2253.
  • [26] Sextos, A.G., A.J. Kappos, and K.D. Pitilakis (2003), Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 2: Parametric study, Earthq. Eng. Struct. Dyn. 32, 4, 629-652, DOI: 10.1002/eqe.242.
  • [27] Spudich, P., M. Hellweg, and W.H.K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions, Bull. Seismol. Soc. Am. 86, 1B, 193-208.
  • [28] Trifunac, M.D. (1972), Scattering of plane SH waves by a semi-cylindrical canyon, Earthq. Eng. Struct. Dyn. 1, 3, 267-281, DOI: 10.1002/eqe.4290010307.
  • [29] Tsaur, D.H., and K.H. Chang (2008), An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: Shallow case, Geophys. J. Int. 174, 1, 255-264, DOI:10.1111/j.1365246X.2008.03788.x.
  • [30] Wong, H.L. (1982), Effect of surface topography on the diffraction of P, SV, and Rayleigh waves, Bull. Seismol. Soc. Am. 72, 4, 1167-1183.
  • [31] Zeng, C., J. Xia, R. Miller, and G. Tsoflias (2012), An improved vacuum formulation for 2D finite-difference modeling of Rayleigh waves including surface topography and internal discontinuities, Geophysics 77, 1, T1-T9, DOI:10.1190/geo2011-0067.1.
  • [32] Zhao, C. (2009), Dynamic and Transient Infinite Elements: Theory and Geophysical, Geotechnical and Geoenvironmental Applications, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer, Dordrecht.
  • [33] Zhao, C. (2010), Coupled method of finite and dynamic infinite elements for simulating wave propagation in elastic solids involving infinite domains, Sci. China Technol. Sci. 53, 6, 1678-1687, DOI: 10.1007/s11431-010-3205-3.
  • [34] Zhou, G., X. Li., and X. Qi (2010), Seismic response analysis of continuous rigid frame bridge considering canyon topography effects under incident SV waves, Earthq. Sci. 23, 1, 53-61, DOI: 10.1007/s11589-009-0065-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-523d776a-dd2a-4fd0-b960-b1c42bd7eccb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.