PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polyvinylpyrrolidone-based coatings for polyurethanes – the effect of reagent concentration on their chosen physical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of manufacturing hydrogel coatings designed to increase the hydrophilicity of polyurethanes (PU) is presented. Coatings were obtained from polyvinylpyrrolidone (PVP) by free radicalpolymerisation. The authors proposed a mechanism of a two-step grafting – crosslinking process and investigated the influence of reagent concentration on the coating’s physical properties hydrogel ratio (HG) and equilibrium swelling ratio (ESR). A surface analysis of freeze-dried coatings using scanning electron microscopy (SEM) showed a highly porous structure. The presented technology can be used to produce biocompatible surfaces with limited protein and cell adhesive properties and can be applied in fabrication of number of biomedical devices, e.g. catheters, vascular grafts and heart prosthesis.
Rocznik
Strony
563--571
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
  • 1. Butruk B., Trzaskowski M., Ciach T., 2012. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction. Mat. Sci. Eng.: C., 32, 1601–1609. DOI: 10.1016/j.msec.2012.04.050.
  • 2. Kaźmierska K., Szwast M., Ciach T., 2010. Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater., 19, 2301-2306. DOI: 10.1007/s10856-007-3339-4.
  • 3. Kim J.H., Kim S.C., 2002. PEO-grafting on PU/PS for enhanced blond compatibility – effect of pendant length and grafting density. Biomater., 23, 2015-2025. DOI: 10.1016/S0142-9612(01)00330-1.
  • 4. Le Y., Scott M., 2010. Immunocamouflage: The biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG). Acta Biomater., 6, 2631-2641. DOI: 10.1016/j.actbio.2010.01.031.
  • 5. Patel A, Mequanint K., 2007. Novel physically crosslinked polyurethane-block-poly(vinyl pyrrolidone) hydrogel biomaterials. Macromol. Biosci., 7, 727-737. DOI: 10.1002/mabi.200600272.
  • 6. Paradowska A.E., Kaźmierska K.A., Ciach T., 2010. Influence of the coating process parameters on the quality of PUR/PVP hydrogel coatings for PVC medical devices. Pol. J. Chem. Technol., 12, 38-45. DOI: 10.2478/v10026-010-0016-z.
  • 7. Walling C., El-Taliawi G.M., Johnson R.A., 1974. Fenton's reagent. IV. Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals, J. Am. Chem. Soc., 96, 133-139. DOI: 10.1021/ja00808a022.
  • 8. Xu L., Siedlecki C.A., 2007. Effects of surface wettability and contact time on protein adhesion to biomaterial, Biomater., 28, 3273-3283. DOI: 10.1016/j.biomaterials.2007.03.032.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-523cba93-81a8-4744-908e-93d1dc225ce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.