Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, dip coating technique is used to deposit titanium dioxide (TiO2) and silver (Ag)-doped-TiO2 nanocomposite thin films on glass substrates. The obtained films are typified using different characterization techniques such as X-ray diffraction (XRD), and UV-Vis-NIR spectroscopy. Films are also tested for environmental applications related to color degradation (methylene blue). The XRD analysis confirms that the prepared nanostructures are the anatase phase of titania. The crystal sizes of annealed Ag-TiO2 as well as TiO2 thin films have been summarized across the XRD pattern and are approximately 29±1 and 23±1 nm, respectively. Additionally, the energy bandgaps of the photocatalysts (Pure-TiO2 and Ag-TiO2) are found to be around 3.3 and 3.02 eV, respectively. The photocatalytic activity of TiO2 and Ag-doped TiO2 nanocomposite thin films is tested in the same initial concentrations of methylene blue in water (3×10-5 M). The photodegradation behavior of Ag-TiO2 (3% by weight) shows a good improvement against pure TiO2 for the concentrations of methylene blue in the pseudo-first order Langmuir-Hinshelwood (LH) model of the kinetics reaction. The global pseudo-first order reaction constant, k, for these concentrations goes from less than 1.4×10-3 min-1 for TiO2 films to 5.4×10-3 min-1 for Ag-TiO2 films. This improvement is due to the incorporation of Ag, which increases the lifetime of the electrons and the separated holes, that decreases the rate of recombination (electron-hole) and which also generates reactive oxygen species. These features open the route to future applications for photocatalytic wastewater treatment and environmental remediation under solar irradiation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
987--996
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wzory
Twórcy
autor
- Qassim University, Department of Physics, College of Sciences, Buraydah Almolaydah, Buraydah, Saudi Arabia
autor
- Umm AL-Qura University, Faculty of Applied Science, Physics Department, Makkah, P.O. Box 715, Saudi Arabia
autor
- Qassim University, Department of Physics, College of Sciences, Buraydah Almolaydah, Buraydah, Saudi Arabia
autor
- Cornell University, Department of Materials Science and Engineering, Ithaca, New York, 14850, USA
autor
- Umm AL-Qura University, Faculty of Applied Science, Physics Department, Makkah, P.O. Box 715, Saudi Arabia
autor
- University of Science and Technology Liaoning, School of Chemical Engineering, Anshan 114051, China
autor
- Imam Abdulrahman Bin Faisal University, Department of Physics, College of Science, P.O. Box 1982, Dammam 31441, Saudi Arabia
autor
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu St., no. 15, Cluj-Napoca, 400020, Cluj county, Romania
Bibliografia
- [1] Z.H. Jabbar, S.E. Ebrahim, Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 17, 100666 (2022).
- [2] Y. Absalan, M.R. Razavi, M. Gholizadeh, A. Ahmadpour, S. Poursabagh, O. Kovalchukova, Enhance the photocatalytic performance of TiO2 nano-semiconductor by simultaneously doping of transition and lanthanide elements for the C-C homocoupling reaction under sunlight irradiation. Nano-Structures & Nanoobjects.
- [3] O. Sacco, A. Mancuso, V. Venditto, S. Pragliola, V. Vaiano, Behavior of N-Doped TiO2 and N-Doped ZnO in Photocatalytic Azo Dye Degradation under UV and Visible Light Irradiation: A Preliminary Investigation. Catalysts. 12, 1208 (2022).
- [4] J. Arun, S. Nachiappan, G. Rangarajan, R.P. Alagappan, K.P. Gopinath, E. Lichtfouse, Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environ Chem Lett. 21, 339-362 (2023).
- [5] K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, F. Altaf, H. Garmestani, F.M. Alamgir, Mixed Conductivity Evaluation and Sensing Characteristics of Limiting Current Oxygen Sensors. Surf. Interfaces 21, 100762 (2020).
- [6] Z. Meiyu, Z. Shi, J. Zhang, K. Zhang, L. Lei, D. Dastan, B. Dong, Greatly Enhanced Dielectric Charge Storage Capabilities of Layered Polymer Composites Incorporated with low loading fractions of ultrathin Amorphous Iron Phosphate Nanosheets. J. Mater. Chem. C. 9, 10414 (2021).
- [7] M. Fathinezhad, M.A.Tarighat, D. Dastan, Chemometrics heavy metal content clusters using electrochemical data of modified carbon paste electrode. Environ. Nanotechnol. Monit. Manag. 14, 1003 (2020).
- [8] S. Xia, Z. Shi, L. Sun, S. Sun, D. Dastan, R. Fan, Suppressing the loss and enhancing the breakdown strengths of high-k materials via constructing layered structure. Mater. Lett. 312, 131654 (2022).
- [9] M. Haghnegahdar, M.A. Tarighat, D. Dastan, Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J. Mater. Sci.: Mater. Electron. 32, 5602-5613 (2021).
- [10] I. Ashraf, S. Ahmad, D. Dastan, C. Wang, H. Garmestani, M. Iqbal, Fabrication of ionic liquid based D-Ti3C2/MoO3 hybrid electrode system for efficient energy storage applications. Electrochimica Acta, 429, 141036 (2022).
- [11] Y. Liu, X. Wang, J. Shang, W. Xu, M. Sheng, C. Ye, The positive effect of formaldehyde on the photocatalytic renoxification of nitrate on TiO2 particles. Atmos. Chem. Phys. 22, 11347-11358 (2022).
- [12] H. Yang, B. Yang, W. Chen, J. Yang, Preparation and Photocatalytic Activities of TiO2-based Composite Catalysts. Catalysts 12, 1263 (2022).
- [13] D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review. Water Research. 139, 118-131 (2018).
- [14] S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of lC-Ms to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. Trends Analyt. Chem. 49, 31-44 (2013).
- [15] M.C. Vagi, A.S. Petsas, Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007-2018). J. Environ. Chem. Eng. 102940 (2019).
- [16] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today. 147, 1-59 (2009).
- [17] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C: Photochem. Rev. 13, 169-189 (2012).
- [18] S. Chiron, A. Fernandez-Alba, A. Rodriguez, E. Garcia-Calvo, Pesticide chemical oxidation: state-of-the-art. Water Res. 34, 366-377 (2000).
- [19] A.K. Al-Mousoi, M.K.A. Mohammed, R. Pandey, J. Madan, D. Dastan, G. Ravi, P. Sakthivele, G. Anandha Babu, Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer. RSC Adv. 12, 32365 (2022).
- [20] D. Dastan, S.L. Panahi, A. Yengantiwar, A.G. Banpurkar, Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv. Sci. Lett. 22, 950-953 (2016).
- [21] W.D. Zhou, D. Dastan, X. Yin, S. Nie, S. Wu, Q. Wang, J. Li, Optimization of gas sensing properties of n-SnO2/pxCuO sensors for homogenous gases and the sensing mechanism. J. Mater. Sci.: Mater. Electron. 31, 18412-18426 (2020).
- [22] A. Jayakrishnan, J. Silva, K. Kamakshi, D. Dastan, V. Annapureddy, M. Pereira, K. Sekhar, Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog. Mater. Sci. 132, 101046 (2023).
- [23] X.T. Yin, J. Li, Q. Wang, D. Dastan, Z.C. Shi, N. Alharbi, H. Garmestani, X.M. Tan, Y. Liu, X.G. Ma, Opposite Sensing Response of Heterojunction Gas Sensors Based on SnO2-Cr2O3 Nanocomposites to H2 against CO and its Selectivity Mechanism. Langmuir 37, 13548-13558 (2021).
- [24] X.T. Yin, S.S. Wu, D. Dastan, S. Nie, Y. Liu, Z.G. Li, Y.W. Zhou, J. Li, A. Faik, K. Shan, Z. Shi, M.A. Tarighat, X.G. Ma, Sensing selectivity of SnO2-Mn3O4 nanocomposite sensors for the Detection of H2 and CO Gases. Surf. Interfaces. 25, 101190 (2021).
- [25] D. Dastan, Studies on Electrical Properties of Hybrid Polymeric Gate Dielectric for Field Effect Transistors. Macromol. Symp. 347, 81-86 (2015).
- [26] J.P.B. Silva, K.C. Sekhar, R.F. Negrea, C. Ghica, D. Dastan, M.J.M. Gomes, Ferroelectric properties of ZrO2 films deposited on ITO-coated glass. Ceram. Int. 48, 6131-6137 (2022).
- [27] M. Han, Z. Shi, W. Zhang, K. Zhang, H. Wang, D. Dastan, R. Fan, Significantly Enhanced High Permittivity and Negative Permittivity in Ag/Al2O3/3D-BaTiO3/epoxy Metacomposites with Unique Hierarchical Heterogeneous Microstructures. Compos. - A: Appl. Sci. Manuf. 149, 106559 (2021).
- [28] L. Liang, Z. Shi, X. Tan, S. Sun, M. Chen, D. Dastan, B. Dong, L. Cao, Largely Improved Breakdown Strength and Discharge Efficiency of Layer-Structured Nanocomposites by Filling with a Small Loading Fraction of 2D Zirconium Phosphate Nanosheets. Adv. Mater. Interfaces 9, 2101646 (2021).
- [29] I. Ashraf, S. Ahmad, F. Nazir, D. Dastan, Z. Shi, H. Garmestani, M. Iqbal, Hydrothermal synthesis and water splitting application of d-Ti3 C2 MXene/V2O5 hybrid nanostructures as an efficient bifunctional catalyst. Int. J. Hydrog. Energy 47, 27383-27396 (2022).
- [30] M.J. Kartha, B.A. Reshi, P.s. Walke, D. Dastan, Morphological Study of Thin Films: Simulation and Experimental Insights using Horizontal Visibility Graph, Ceram. Int. 48, 5066-5074 (2021).
- [31] S. Wei, Z. Shi, W. Wei, H. Wang, D. Dastan, M. Huang, J. Shi, S. Chen, Facile preparation of ultralight porous carbon hollow nanoboxes for electromagnetic wave absorption. Ceram. Int. 47, 28014-28020 (2021).
- [32] F. Altaf, S. Ahmed, D. Dastan, R. Batool, Z.U. Rehman, Z. Shi, M.U. Hameed, P. Bocchetta, K. Jacob, Novel sepiolite reinforced emerging composite polymer electrolyte membranes for high-performance direct methanol fuel cells. Mater. Today Chem. 24, 100843 (2022).
- [33] D. Dastan, A. Banpurkar, Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. Mater. Electron. 28, 3851-3859 (2016).
- [34] Y. Panahi, H. Mellatyar, M. Farshbaf, Z. Sabet, T. Fattahi, A. Akbarzadehe, Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. Mater. Today: Proc. 5, 15550-15558 (2018).
- [35] I.S. Yunus, H.A. Kurniawan, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 1, 136-148 (2012).
- [36] A. Timoumi, H.M. Albetran, H.R. Alamri, S.N. Alamri, I.M. Low, Impact of annealing temperature on structural, morphological and optical properties of Go-TiO2 thin films prepared by spin coating technique. Superlattices Microstruct. 139, 106423 (2020).
- [37] M.A. Ansari, H.M. Albetran, M.H. Alheshibri, A. Timoumi, N.A. Algarou, S. Akhtar, Y. Slimani, M.A. Almessiere, F.S. Alahmari, A. Baykal, I.M. Low, Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics 9, 572 (2020).
- [38] O. Akhavan, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 336, 117-124 (2009).
- [39] Q.Q. Chu, Z. Sun, Y. Liu, H. Cui, B. Cheng, D. Dastan, K. Moon, G.J. Yang, C.P. Wong, Difluorobenzylamine Treatment of Organolead Halide Perovskite Boosting High Efficiency and Stable Photovoltaic Cells. ACS Appl. Mater. Interfaces, 14, 11388-11397 (2022).
- [40] S. Goulart, L.J. Jaramillo Nieves, A.G. Dal Bó, A.M. Bernardin, Sensitization of TiO2 nanoparticles with natural dyes extracts for photocatalytic activity under visible light. Dyes and Pigments 182, 108654 (2020).
- [41] F. Orudzhev, S. Ramazanov, D. Sobola, A. Isaev, C. Wang, A. Magomedova, M. Kadiev, K. Kaviyarasu, Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties. Nanomaterials 10, 2183 (2020).
- [42] E.C.R. Lopez, Rational Selection of Transition Metal Co-Dopant in Sulfur-Doped Titanium Dioxide. Eng. Proc. 5, (2023).
- [43] A. Timoumi, W. Zayoud, A. Sharma, M. Kraini, N. Bouguila, A. Hakamy, N. Revaprasadu, S. Alaya, Impact of thermal annealing inducing oxidation process on the crystalline powder of In2S3. J. Mater. Sci. Mater. Electron. 31, 13636-13645 (2020).
- [44] C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka, N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B. 106, 318-324 (2002).
- [45] B. Jamoussi, R. Chakroun, A. Timoumi, K. Essalah, Synthesis and characterization of new imidazole phthalocyanine for photo-degradation of micro-organic pollutants from sea water. Catalysts 10, 906 (2020).
- [46] O. Rosseler, M.V. Shankar, M.K. Du, L. Schmidlin, N. Keller, V. Keller, Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 269 (1), 179-190 (2010).
- [47] T.L. Thompson, J.T. Yates, Surface science studies of the photo-activation of TiO2 new photochemical processes. Chem. Rev. 106, 4428-4453 (2006).
- [48] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582 (2008).
- [49] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid. Interfac. Sci. 145, 83-96 (2009).
- [50] S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catal. Today. 93, 877-884 (2004).
- [51] F. Bensouici, T. Souier, A.A. Dakhel, A. Iratni, R. Tala-Ighil, M. Bououdina, Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film, Superlattices Microstruct. 85, 255-265 (2015).
- [52] A. Ferreira da Silva, I. Pepe, James L. Gole, S.A. Tomás, R. Palomino, W.M. de Azevedo, E.F. da Silva, R. Ahuja, C. Persson, Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol-gel nanofilms. Appl. Surf. Sci. 252, 5365-5367 (2006).
- [53] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol. A: Chem. 148, 233-245 (2002).
- [54] N. Shimizu, C. Ogino, M.F. Dadjour, T. Murata, Sonocatalytic degradation of methylene blue with TiO2 pellets in water, Ultrason. Sonochem. 14, 184-190 (2007).
- [55] A. Timoumi, S.N. Alamri, H. Alamri, The development of TiO2 graphene oxide nano composite thin films for solar Cells. Results Phys. 11, 46-51 (2018).
- [56] W. Belhadj, A. Timoumi, F.A. Alamer, O.H. Alsalmi, S.N. Alamri, Experimental study and theoretical modeling of coating-speed-dependent optical properties of TiO2-graphene-oxide thin films. Rresults Phys. 30, 104867 (2021).
- [57] D. Dastan, K. Shan, A. Jafari, T. Marszalek, M.K.A. Mohammed, L. Tao, Z. Shi, Y. Chen, X.T. Yin, N.D. Alharbi, F. Gity, S. Asgary, M. Hatamvand, L. Ansari, Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique. Mater. Sci. Semicond. Process. 154, 107232 (2023).
- [58] T. Abdelmajid, D. Dastan, B. Jamoussi, K. Essalah, O.H. Alsalmi, N. Bouguila, H. Abassi, R. Chakroun, Z. Shi, Ş. Ţălu, Experimental and Theoretical Studies on Optical Properties of Tetra(Imidazole) of Palladium (II) Phthalocyanine. Mol. 27, 6151 (2022).
- [59] S.-C. Jung, B.-H. Kim, S.-J. Kim, N. Imaishi, Y.-I. Cho, Characterization of a TiO2 photocatalyst film deposited by CVD and its photocatalytic activity. Chem. Vap. Deposition. 11, 137-141 (2005).
- [60] D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P.E. Schmid, R. Sanjinés, F. Lévy, V.I. Pârvulescu, Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Appl. Catal. B: Environ. 25, 83-92 (2000).
- [61] X. Yin, Selectivity sensing response of ZnO-xCo3O4 based sensor to Co against CH4. Mater. Sci. Semicond. Process 149, 106883 (2022).
- [62] P. Hoyer, Formation of a titanium dioxide nanotube array. Langmuir. 12, 1411-1413 (1996).
- [63] P. Zhu, D. Dastan, L. Liu, L. Wu, Z. Shi, Q.Q. Chu, F. Altaf, M.K.A. Mohammed, Surface wettability of various phases of titania thin films: Atomic-scale simulation studies. J. Mol. Graph. Model. 118, 108335 (2023).
- [64] D. Dastan, K. Shan, A. Jafari, F. Gity, X.T. Yin, Z. Shi, N.D. Alharbi, B.A. Reshi, W. Fu, Ş. Ţălu, L. Aljerf, H. Garmestani, L. Ansari, Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering. Appl. Phys. A, 128, 400 (2022).
- [65] A. Timoumi, H. Bouzouita, Thickness dependent physical properties of evaporated In2S3 films for photovoltaic application. Int. J. Renew. Energy Technol. Res., 2, 188-195 (2013).
- [66] M.K.A. Mohammed, A.K. Al-Mousoi, S. Singh, U. Younis, A. Kumar, D. Dastan, G.R. Mohammed, Ionic Liquid Passivator for Mesoporous Titanium Dioxide Electron Transport Layer to Enhance Efficiency and Stability of Hole Conductor-Free Perovskite Solar Cells. Energ. Fuel. 36, 12192-12200 (2022).
- [67] A. Soleimany, S. Khoee, D. Dastan, Z. Shi, S. Yu, B.S. Soleimany, Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot. J. Photochem. & Photobiol. B: Biol. 238, 112602 (2023).
- [68] M.K.A. Mohammed, A.K. Al-Mousoi, S.M. Majeed, S. Singh, A. Kumar, R. Pandey, J. Madan, D.S. Ahmed, D. Dastan, Stable Hole-Transporting Material-Free Perovskite Solar Cells with Efficiency Exceeding 14% via the Introduction of a Malonic Acid Additive for a Perovskite Precursor. Energ. Fuel. 36, 13187-13194 (2022).
- [69] W. Li, R. Liang, A. Hu, Z. Huanga, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4, 36959-36966 (2014).
- [70] X.T. Yin, H. Huang, J.L. Xie, D. Dastan, J. Li, Y. Liu, X.M. Tan, X.C. Gao, W.A. Shah, X.G. Ma, High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol-gel method. Green Chem. Lett. Rev. 15, 546-556 (2022).
- [71] W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc. 136, 9280-9283 (2014).
- [72] Y. Wang, X. Zhang, J. Liu, Y. Wang, D. Duan, C. Fan, Facile regeneration and photocatalytic activity of CuO-modified silver bromide photocatalyst. Mater. Sci. Semicond. Process. 40, 613-620 (2015).
- [73] C. Yu, G. Li, S. Kumar, H. Kawasaki, R. Jin, Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity. J. Phys. Chem. A. 4, 2847-2852 (2013).
- [74] C. An, S. Peng, Y. Sun, Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst. Adv. Mater. 22, 2570-2574 (2010).
- [75] S. Abbasi, D. Dastan, Ş. Ţălu, M. B. Tahir, Md. Elias, L. Tao, Z. Li, Evaluation of the dependence of methyl orange organic pollutant removal rate on the amount of titanium dioxide nanoparticles in MWCNTs-TiO2 photocatalyst using statistical methods and Duncan’s multiple range test. Int. J. Environ. An. Chem. (2022).
- [76] F. Li, Y. Zhao, Y. Liu, Y. Hao, R. Liu, D. Zhao, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. J. Chem. Eng. 173, 750-759 (2011).
- [77] K.V. Kumar, K. Porkodi, F. Rocha, Langmuir-Hinshelwood kinetics - A theoretical study. Catal. Commun. 9, 82-84 (2008).
- [78] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A: Chem. 140, 163-172 (2001).
- [79] C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study. Ind. Eng. Chem. Res. 53, 14641-14649 (2014).
- [80] C. Tingting, G. Huajing, L. Guorong, P. Zhongsheng, W. Shifa, Y. Zao, W. Xianwen, Y. Hua, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids Surf. A: Physicochem. Eng. Asp. 633, 127918 (2022).
- [81] C. Peng, L. Fan, D. Hongzhi, C. Sheng, C. Lang, L. You-Ji, A. Chak-Tong, Y. Shuang-Feng, Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B: Environ. 252, 33-40 (2019).
- [82] T. Ningmei, L. Youji, C. Feitai, H. Zhenying, In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. RSC Adv. 8, 42233-42245 (2018).
- [83] X. Lin, Y. Li, F. Chen, P. Xu, M. Li, Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv. 7, 25314-25324 (2017).
- [84] S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr-and Ni-doped TiO2 . Res. Chem. Intermed. 44, 3115-3134 (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-523b65a6-3b10-4c8e-88eb-25fd92978252
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.