PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of Monocrystalline Silicon Wafer Defects Using Deep Transfer Learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Defect detection is an important step in industrial production of monocrystalline silicon. Through the study of deep learning, this work proposes a framework for classifying monocrystalline silicon wafer defects using deep transfer learning (DTL). An existing pre-trained deep learning model was used as the starting point for building a new model. We studied the use of DTL and the potential adaptation of Mo bileNetV2 that was pre-trained using ImageNet for extracting monocrystalline silicon wafer defect features. This has led to speeding up the training process and to improving performance of the DTL-MobileNetV2 model in detecting and classifying six types of monocrystalline silicon wafer defects (crack, double contrast, hole, microcrack, saw-mark and stain). The process of training the DTL-MobileNetV2 model was optimized by relying on the dense block layer and global average pooling (GAP) method which had accelerated the convergence rate and improved generalization of the classification network. The monocrystalline silicon wafer defect classification technique relying on the DTL-MobileNetV2 model achieved the accuracy rate of 98.99% when evaluated against the testing set. This shows that DTL is an effective way of detecting different types of defects in monocrystalline silicon wafers, thus being suitable for minimizing misclassification and maximizing the overall production capacities.
Rocznik
Tom
Strony
34--42
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • LONGi (Kch) Sdn Bhd, 1072, Persiaran Elektronik 2, 93350 Kuching, Sarawak, Malaysia
  • Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
  • Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
  • Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
Bibliografia
  • [1] A. Ganum, „Improve wafer defects detection using deep learning approach", Master thesis, Universiti Malaysia Sarawak (UNIMAS), 2021.
  • [2] A. G. Howard et al., „MobileNets: efficient convolutional neural networks for mobile vision applications", Computing Research Repository, arXiv:1704.04861, 2017 [Online]. Available: https://arxiv.org/pdf/1704.04861.pdf
  • [3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, „MobileNetV2: Inverted Residuals and Linear Bottlenecks", in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018, pp. 4510-4520 (DOI: 10.1109/CVPR.2018.00474).
  • [4] J. A. Mat Jizat, A. P. P. Abdul Majeed, A. F. Ab. Nasir, Z. Taha, and E. Yuen, „Evaluation of the machine learning classifier in wafer defects classification", ICT Express (in Press), 2021 (DOI: 10.1016/j.icte.2021.04.007).
  • [5] C. Tan et al., „A Survey on Deep Transfer Learning", in Artificial Neural Networks and Machine Learning - ICANN, Rhodes, Greece, 2018, pp. 270-279 (DOI: 10.1007/978-3-030-01424-7 27).
  • [6] P. Gavali and J. S. Banu, „Deep convolutional neural network for image classification on CUDA platform", in Deep Learning and Parallel Computing Environment for Bioengineering Systems, A. K. Sangaiah, Ed. USA: Academic Press, 2019, pp. 99-122 (DOI: 10.1016/B978-0-12-816718-2.00013-0).
  • [7] K. Imoto, T. Nakai, T. Ike, K. Haruki, and Y. Sato, „A CNN-based transfer learning method for defect classification in semiconductor manufacturing", IEEE Trans. on Semiconductor Manufacturing, vol. 32, no. 4, pp. 455-459, 2019 (DOI: 10.1109/TSM.2019.2941752).
  • [8] H. Kudo, T. Matsumoto, K. Kutsukake, and N. Usami, „Occurrence prediction of dislocation regions in photoluminescence image of multicrystalline silicon wafers using transfer learning of convolutional neural network", IEICE Trans. on Fundamentals of Electronics, Commun. and Computer Sci., vol. E104A, no. 6, pp. 857-865, 2020 (DOI: 10.1587/transfun.2020IMP0010).
  • [9] J.-H. Lee and J.-H. Lee, „A reliable defect detection method for patterned wafer image using convolutional neural networks with the transfer learning", in 4th Int. Conf. on Adv. Materials Res. and Manufacturing Technol. (AMRMT), Oxford, United Kingdom, vol. 647, 2019 (DOI: 10.1088/1757-899X/647/1/012010).
  • [10] Keras Applications, [Online]. Available: https://keras.io/api/applications/ (accessed on 30.08.2021).
  • [11] O. Russakovsky et al., „ImageNet large scale visual recognition challenge", Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015 (DOI: 10.1007/s11263-015-0816-y).
  • [12] C. Chen et al., „Deep learning on computational-resource-limited platforms: A survey", Mobile Information Systems, vol. 2020, Article ID 8454327, 19 pages, 2020 (DOI: 10.1155/2020/8454327).
  • [13] J. Brownlee, „Estimate the number of experiment repeats for stochastic machine learning algorithms", 2020 [Online]. Available: https://machinelearningmastery.com/estimate-number-experiment-repeats-stochastic-machine-learning-algorithms/
  • [14] D. Masters and C. Luschi, „Revisiting small batch training for deep neural networks", arXiv:1804.07612, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-523a5734-b3ed-497e-934e-2e7462ff0290
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.