PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofunctional impact of textured coatings in the application of heart assist therapy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to a lack of organs, cardiac support systems are being implanted in patients with severe congestive heart failure. One of the solutions to overcome complications such as infow obstruction or pump thrombosis, which may occur in the case of ventricular assist devices, is to modify the surface of cannulas for the controlled blood clotting process. The results obtained up till now for developed surface coatings clearly show the influence of topographical and mechanical parameters of the coatings on cell viability and protein adsorption mechanism. The new coatings should enable the controlled growth of scar tissue, resulting in the limitation of thromboembolic events, and the reduction of cystic tissue growth into the fow lumen. The aim of this study is to evaluate the correlation between surface topography parameters on the susceptibility of cells to grow and adhere to the substrate as a solution with potential for use in MCS (mechanical circulatory support) devices. Research on surfaces used in MCS devices and on inflow cannulas has been carried out for many years, while the novelty of the present solution makes it a milestone within that type of application simultaneously allowing for appropriate selection of process parameters. Surface modifcation of titanium alloy Ti6Al7Nb was carried out using vacuum powder sintering of CP-Ti (commercially pure titanium) powder with two morphologies (regular spheres and irregular grains). The characterization of coatings obtained with the proposed method and the influence of measured topographic parameters (applying scanning electron microscopy, contact angle measurement and contact proflometry) on the cytotoxicity and susceptibility to protein adsorption were presented. Advanced albumin adsorption studies have fully confrmed the dependence of surface complexity on protein adsorption. The obtained results show a high potential of the produced coatings toward enabling permanent integration at the implant with the soft tissue.
Rocznik
Strony
art. no. e31, 2023
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 345A Wolności St., 41-800 Zabrze, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, 40 Roosevelta St., 41-800 Zabrze, Poland
  • Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawińska St., 31-066 Cracow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
  • Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 345A Wolności St., 41-800 Zabrze, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Skłodowskiej-Curie St., 41-819 Zabrze, Poland
  • Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
Bibliografia
  • 1. Molina EJ, Shah P, Kierman MS, Kirklin JK. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. The Society of Thoracic Surgeons Intermacs Annual Report. 2021;111:778-92. https://doi.org/10.1016/j.athoracsur.2020.12.038.
  • 2. Benjamin EJ, Blaha MJ, Chuve SE, Cushman M. Heart disease and stroke statistics – 2017 update: a report from the American Heart Association. Circulation. 2017;135:146-603. https://doi. org/10.1161/CIR.0000000000000485.
  • 3. Yearly Statistics Overview Eurotransplant. 2021. https://stati stics.eurotransplant.org/index.php?search_type=&search_organ=heart&search_region=by+country&search_period=2021&search_characteristic=&search_text= Accessed 30 May 2022.
  • 4. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787-847.
  • 5. Kopernik M, Milenin A. Two-scale fnite element model of multilayer blood chamber of POLVAD-EXT. Arch Civ Mech Eng. 2012;12:178-85. https://doi.org/10.1016/j.acme.2012.04.003.
  • 6. Kirklin JK, Naftel DC, Pagani FD, Kormos RL. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transpl. 2015;34:1495-504. https://doi.org/10.1016/j.healun.2015.10.003.
  • 7. Padera RF, Schoen FJ. Other cardiovascular devices. In: Ratner BD, Hoffman AS, editors. Biomaterials science: an introduction to materials. 3rd ed. Academic Press; 2013. p. 784-98.
  • 8. Dasse KA, Chipman SD, Sherman CN, Levine AH, Frazier O. Clinical experience with textured blood contacting surfaces in ventricular assist devices. ASAIO Trans. 1987;33:418-25.
  • 9. Rose EA, Levin HR, Frazier OH. Artifcial circulatory support with textured interior surfaces: a counterintuitive approach to minimizing thromboembolism. Circulation. 1994;90(5 Pt 2):87-91.
  • 10. Menezes P, Lovell M. Surface texture. In: Davim JP, editor. Materials and surface engineering. Woodhead Publishing Reviews: Mechanical Engineering Series; 2012. p. 207-42.
  • 11. Kirklin JK, Pagani FD, Kormos RL. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080-6. https://doi. org/10.1016/j.healun.2017.07.005.
  • 12. Pleșoianu FA, Pleșoianu CE, Bojan IB, Bojan A, Țăruș A, Tinică G. Concept, design, and early prototyping of a low-cost, minimally invasive, fully implantable left ventricular assist device. Bioengineering. 2022;9(5):201.
  • 13. Drazner MH. A new left ventricular assist device - better, but still not ideal. New Eng J Med. 2018;378(15):1442-3. https://doi.org/10.1056/NEJMe1802639.
  • 14. Burrell AJC, Salamonsen R, Murphy DA. Complications of mechanical circulatory and respiratory support. In: Gregory SD, Stevens MC, Fraser JF, editors. mechanical circulatory and respiratory support. Academic Press; 2018. p. 495-528.
  • 15. Castrodeza J, Ortiz-Bautista C, Fernández-Avilés F. Continuous-flow left ventricular assist device: current knowledge, complications, and future directions. Cardiol J. 2022;29(2):293-304. https://doi.org/10.5603/CJ.A2021.0172.
  • 16. Breme J, Kirkpatrick CJ, Thull R. Metallic biomaterial interfaces. Wiley-VCH. 2008. https://doi.org/10.1002/9783527622603.
  • 17. Najjar SS, Slaughter MS, Pagani FD, Starling RC. Analysis of pump thrombus events in patients in the HeartWare advance bridge to transplant and continued access protocol trial. J Heart Lung Transpl. 2014;33:23-34. https://doi.org/10.1016/j.healun.2013.12.001.
  • 18. Kurtyka P, Kustosz R, Kaczmarek M, Tokarska K. Surface modifications for infow cannulas of ventricular assist devices-comparison of latest solutions. Eng Biomater. 2019;151:17-23.
  • 19. Glass CH, Christakis A, Fishbein GA, Watkins J. Thrombus on the infow cannula of the HeartWare HVAD: an update. Cardiovasc Pathol. 2019;38:14-20. https://doi.org/10.1016/j.carpath.2018.09.002.
  • 20. Blitz A. Pump thrombosis-A riddle wrapped in a mystery inside an enigma. Ann Cardiothorac Surg. 2014;3:450-71. https://doi. org/10.3978/J.ISSN.2225-319X.2014.09.10.
  • 21. Houel R, Moczar M, Clerin V. Pseudointima in inflow conduits of left ventricular assist devices. Ann Thorac Surg. 1999;68:717-23. https://doi.org/10.1016/S0003-4975(99)00527-5.
  • 22. Hecker JF, Scandrett LA. Roughness and thrombogenicity of the outer surfaces of intravascular catheters. J Biomed Mater Res. 1985;19:381-95. https://doi.org/10.1002/JBM.820190404.
  • 23. Braune E, Lataur RA, Reinthaler M, Landmesser U. In vitro thrombogenicity testing of biomaterials. Adv Healthcare Mater. 2019;1900527:1-17. https://doi.org/10.1002/adhm.201900527.
  • 24. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219. https://doi.org/10.1177/0022034509359125.
  • 25. Gawlikowski M, Kustosz R, Glowacki M. Non-invasive assessment of thromboembolism in rotary blood pumps: case study. In: Proceedings Volume 10455, 12th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods. 2017;10455. https://doi.org/10.1117/12.2282667. Accessed 14 June 2022.
  • 26. Fraser JF, Gregory SD, Stevens MC. Mechanical circulatory and respiratory support. 1st ed. London: Academic Press; 2017.
  • 27. Zhang Z, Kurita H, Kobayashi H. Osteoinduction with HA/TCP ceramics of different composition and porous structure in rabbits. Oral Sci Int. 2005;2:85-95. https://doi.org/10.1016/S1348-8643(05)80011-4.
  • 28. Campbell CE, von Recum AF. Microtopography and soft tissue response. J Invest Surg. 1989;2:51-74. https://doi.org/10.3109/ 08941938909016503.
  • 29. John M, Prakash RV. Void content measurement in fiber reinforced plastic composites by X-ray computed tomography. Mat Sci Forum. 2018;928:38-44. https://doi.org/10.4028/www.scien tifc.net/MSF.928.38.
  • 30. Kopernik M, Milenin A. Numerical modeling of substrate effect on determination of elastic and plastic properties of TiN nanocoating in nanoindentation test. Arch Civ Mech Eng. 2014;14:269-77. https://doi.org/10.1016/J.ACME.2013.10.001.
  • 31. Gourlay T, Black RA. Biomaterials and devices for the circulatory system. 1st ed. Woodhead Publishing; 2010.
  • 32. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem. 1976;72:248-54. https://doi.org/10.1006/abio.1976.9999.
  • 33. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):751-66 (PMID: 18110453).
  • 34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
  • 35. Smith PK, Krohn RI, Hermanson GT, Malia AK. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76-85. https://doi.org/10.1016/0003-2697(85)90442-7.
  • 36. Stoscheck CM. Protein assay sensitive at nanogram levels. Anal Biochem. 1987;160(2):301-5.
  • 37. Frazier OH, Kar B, Patel V, Gregoric ID. First clinical use of the redesigned HeartMate II left ventricular assist system in the United States: a case report. Tex Heart Inst J. 2004;31:157-9.
  • 38. Yamada Y, Nashinaka T, Mizuno T, Taenaka Y. Neointima-inducing infow cannula with titanium mesh for left ventricular assist device. J Artif Organs. 2011;14:269-75. https://doi.org/10.1007/s10047-011-0586-4.
  • 39. Yamada Y, Hoki R, Kikuchi N. Neointima-inducing inflow cannula for over 5 years after left ventricular assist device implantation. J Heart Lung Transpl. 2021;40(4):S388. https://doi.org/10.1016/j.healun.2021.01.1092.
  • 40. Freels DB, Kilpatrick S, Gordon ES, Ward WG. Animal model for evaluation of soft tissue ingrowth into various types of porous coating. Clin Orthop Relat Res. 2002;397:315-22. https://doi.org/10.1097/00003086-200204000-00036.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5232050a-b39e-4f0e-94eb-783e12409c20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.