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ABSTRACT: The a-p-y tracking filter is useful for tracking a constant acceleration target with zero lag error in
the steady state. It, however, depicts a constant lag error for a maneuvering target. Various algorithms of the a-
[B-y tracking filter exist in literature and each one of them presents its own unique challenges and advantages
depending on the design requirement.

This study investigates the operation of three a-f3-y tracking filter design methods which include Benedict-
Bordner also known as the Simpson filter, Gray-Murray filter and the fading memory constant acceleration
filter. These filters are then compared based on the ability to reduce noise and follow a maneuvering target with
minimum lag error, against the jerky model a-p-y-n. Results obtained from simulations of the input model of
the target dynamics under consideration indicate an improvement in performance of the jerky model in

comparison with the constant acceleration models.

1 INTRODUCTION

The tracking radar system has a wide application in
both the military and civilian fields. In the military,
tracking is essential for fire control and missile
guidance whereas in civilian application it is useful
for controlling traffic of manned maneuverable
vehicles such as ships, submarines and aircrafts
which require accurate tracking. Tracking filters play
the key role of target state estimation from which the
tracking system is updated. One of the tracking filters
in use today in many tracking applications is the a-3-
v filter which is a development of the a-( filter aimed
at tracking an accelerating target since the a-f filter is
only effective when the target model input is a
constant velocity model.

Due to the essential role that tracking filters play
in a tracking system, many researchers have taken
quite an interest in understanding the theory and

application leading to valuable insights into design
developments and improvement. In the early work of
Benedict and Bordner (1962), the authors based their
analysis of the a-f3 filter on the frequency domain (Z-
transform). They proposed a relationship between the
a and B filtering coefficients derived from a pole
matching technique in order to optimize the tracker’s
ability to reduce noise and achieve a good transient
performance. This led to what is known today as the
Benedict-Bordner relationship. Simpson (1963) further
extended this study to the a-p-y filter by including
the acceleration term thus arriving at the optimization
condition between the filter weight coefficients.

Kalata (1984) proposed the use of a tracking index
that relates the filter coefficients and is a function of
position uncertainty due to target maneuverability,
radar measurement uncertainty and update time
interval. He utilized the tracking index parameter to
derive implicit closed form equations of the
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smoothing coefficients which resulted in optimal
performance. A more convenient way to determine
the optimal filtering weights was investigated by
Gray and Murray (1993) whereby a damping
parameter that computes the smoothing coefficients
directly was derived analytically.

Njonjo et al (2016) investigated the performance of
the fading memory a-f3-y filter on a high dynamic
target warship. The research concluded that the filter
was capable of tracking the highly maneuvering
vessel with a relatively good accuracy in terms of
noise reduction. This research was further extended
by Pan et al (2016) where the filter was optimized in
order to improve its tracking ability by reducing the
noise further. The optimization procedure involved
varying the value of the discounting factor, &, with
the residual error and determining the & that
corresponds to the minimum error. The study
concluded that the optimal filter uniquely varies with
the initial speed and average speed of the target
under consideration.

In this study, different algorithms of the steady
state Kalman filter are investigated and compared
based on capability to reduce noise of a highly
maneuvering target and hence provide quality
estimates. The study focusses on performance
comparison of the Benedict-Bordner filter also known
as the Simpson filter, Gray-Murray filter and the
fading memory o-B-y filter, also known as the
critically damped filter. These filters are then
compared with the optimal a-p-y-n filter.

2 THEORY OF THE A-B-T' FILTER

The a-p-v filter is a steady state Kalman filter which
assumes that the input model of the target’s dynamics
is a constant acceleration model. The model has a
low computational load since only two steps are
involved that is, estimation and updating the
prediction estimates of position, velocity and
acceleration as shown in Equations 1-6. In addition,
the smoothing coefficients of the filter are constant for
a given sensor which further contributes to its design
simplicity. The selection of the weighting coefficient is
an important design consideration as it directly affects
the error reduction capability. The optimal filter of
three different designs of the a-p-y filter are
investigated and compared based on their ability to
reduce tracking error and improve the tracking
response. The three designs differ in their selection of
the smoothing coefficients «, 3 and .

Prediction;

t2
Pp(n)=Ps(n—1)+tVS(n—1)+?AS(n—1), (1)
Vp(n) =V (n-D +tAg(n-1), (2)
Ap(n) = Ag(n-1). 3)
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Smoothing;
Ps(n) = Pp(n) +a( PO (n) - Pp (), (4)
_ B
Vs(n) —Vp (n)+ t (Po(n)_ Pp(n))s (5)
2y
A(m = Ap(n)+t—2(P0(n)— Po(m). (6)

where o, p and s denote the observed, predicted and
smoothed state parameters respectively; P, V and A
are the target’s position, velocity and acceleration
respectively; t is the simulation time interval; and 7 is
the sample number.

2.1 Benedict-Bordner model

The optimal filter is obtained when the condition in
Equation 7 is satisfied.

2

p=—— @)
2 -a

The design of this filter does not specify the
optimal position smoothing coefficient, a, hence it is
chosen based on the system application. It is proposed
to vary a with observed high frequency power
fluctuations of the tracking error residual or the
innovation, (P, (n)- Pp (n)) .

The Benedict- Bordner filter  coefficient
relationship becomes an optimal third order tracking
filter when the condition in Equation 8 is satisfied;

2ﬂ—a(a+ﬁ+§)=0. (8)

2.2 Gray-Murray Model

This filter is an extension of the Kalata filter
coefficients relationship which employs the tracking
index to compute a damping parameter which is
consequently used to calculate the position smoothing
coefficient, a. The tracking index is determined from
the relationship given in Equation 9.

A=—W )

where t = target tracking period; % =
maneuverability noise; and "r = measurement noise.

The damping parameter, r, is computed as shown
in Equation 10. The position, velocity and acceleration
gain parameters, o, (3, and v, are computed explicitly
as shown in Equations 11-13. 3)



(44 A) - (8A +A2)
r= ,
4

(10)

a=1-1, (11)

f=22-a)-4)l-a, (12)
2

r= (13)

2.3 The fading memory filter model

The fading memory filter has three real roots and
represents the filter minimizing the discounted least
squares error for a constantly accelerating target as
discussed Brookner (1998). The position, velocity and
acceleration gain coefficients are computed from the
damping parameter, &, which is the discounting factor
and whose value was investigated through an
optimization process and found to depend on the
initial and average speed of the target under
consideration as was determined by Pan et al (2016).
The smoothing coefficients are obtained as shown in
Equations 14-16.

3

a-1-&. (14)

B=151-¢)(+&), (15)
3

y=01-8". (16)

3 THEORY OF a--y-n FILTER

The a-p-y-n filter is a constant gain, four-state
tracking filter. ~ The four state vector includes
position, velocity, acceleration and jerk, a time
derivative of acceleration. The jerk is modelled as a
constant and includes zero mean white Gaussian
noise. Equations 17- 20 are the prediction equations
for position, velocity, acceleration and jerk
respectively where they are updated from the
estimated state thereby lowering the tracking error.
Equations 21-24 are the smoothing equations which
are computed by adding a weighted difference
between the observed and the predicted position to
the forecast state.

Prediction;

2

t t3
Pp(n) = Ps(n71)+tVS(n71)+7AS(nfl)+zjs(nfl), (17)

2
Vp(n)=Vs(n—1)+tAS(n—1)+t7js(n—1), (18)
Ay = A(n=1)+tjs(n-1), (19)
JpM=js(n-D. (20)
Smoothing;
Ps(n = Pp(n) +a(Py(n) - Pp(n)), (21)
Vs (n) =Vp (n) +€(Po(n) - Py, (22)
A = A+ (R ()~ Py () (23)
2t
Js(m = ) + =Ry~ Py () (24)
6t

where the subscripts o, p and s denote the observed,
predicted and smoothed state  parameters
respectively; P, V and A are the target’s position,
velocity and acceleration respectively; t is the
simulation time interval; and 7 is the sample number.

The filter weight constants, a, f, ¥ and 17, are
computed using the fading memory filter model as
shown in Equations 25-28 (Brookner, 1998). £ is the
discounting factor that minimizes the least squares
error for a constant jerk model input. The smoothing
constants are determined from the value of the
discounting factor hence the optimization of the filter
is applied on the £ as illustrated by Pan et al (2016).

a=1-¢", (25)

— -9 ez (26)
y=20-6 +2), 27)
n =%<1—g’>4. (28)
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4 SIMULATION

4.1 Input model of target’s dynamics

The simulation tests were carried out on a high
dynamic target moving at the initial speed of 50 m/s
as observed from a stationary own ship. A sample
signal of n=1000 data samples was investigated at
sampling interval time of t=3 s which corresponds to
the time of one aerial rotation of the radar antenna.
The target’s initial position as observed from the
radar range measurements was (573, 1038.4) after
scan-conversion to produce Cartesian coordinates.
The input model employed to generate the target
dynamics is as shown below in Equations 29-30.

Xi = a[10sin(1.2wi) + 7 cos(0.99wi) + 8 sin(0.7wi) + 6 cos(2wi) +

9 sin(3wi) + 5 cos(3wi)] + 10i,

Y; = b[20 cos(0.3wi) + 22 sin(2wi)]. (30)

The resulting data was then sampled at intervals
of three seconds to obtain the true trajectory of the
target as shown in Figure 1.
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Figure 1. Target’s true trajectory.

4.2 Noise addition

The observation measurement obtained from the
radar sensor contains an error which was accounted
for by corrupting the true positions with zero mean
random white Gaussian noise with a standard
deviation, o, of 10 m. Figures 2a & 2b show the error
distribution in the observation.
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Figure 2a. East-west error distribution in the observation.

North- South error, m

Sample step

Figure 2b. North-south error distribution in the observation.

4.3 Filter gain coefficient selection and computation

4.3.1 Filter gain coefficients selection using the Benedict-
Bordner model

Since this design method does not provide an
analytical solution for determining the position
smoothing coefficient a, in this study, the position
smoothing coefficient was determined experimentally
through a trial and error method by plotting it against
the corresponding innovation which is the total
residual obtained from the difference between the
observed position and predicted position trajectories
as shown in Figure 3. The interval evaluated was
selected based on the stability constraints provided
for by Jury (1964) for the a-f-y tracking filter. The
value of & that best reduced the innovation was found
to be a=0.86. Equations 7 & 8 were then used to
compute the values of the velocity and acceleration
smoothing coefficients as shown in Table 3.1.

150000
130000
110000
90000
70000
50000
30000

Innovation, m

10000
035 0.55 0.75 0.95

a

Figure 3. Total residual between observed and predicted
positions against corresponding value of position
smoothing coefficient, a.



Table 1. Smoothing coefficients obtained from Benedict-
Bordner model.

@ p Y

0.86 0.6488 4.4409 x 101

4.3.2 Filter gain coefficients selection using the Gray-
Murray model

The maneuverability and measurement noise
variances were determined experimentally by an
iterative trial and error method by changing the
values of maneuverability and measurement error
variances while simultaneously feeding the
measurement data to the filter for each error variance.
The output was then used to compute cumulative
positional error which was then plotted against
corresponding error variances. The purpose of this
procedure was to determine the error variance
coefficient corresponding to the least error. From the
Figures 4-7, the values of the maneuverability and
measurement error variance coefficients
corresponding to the minimum residual error are 10
and 1 respectively. Consequently, the respective
standard deviations are estimated to be 0+=0.03162
and o-=1.

The tracking index was, therefore, computed as
/=0.2846 and, consequently the damping parameter,
r=0.6873. The smoothing coefficients are then
computed using Equations 11-13 and are obtained as
displayed in Table 2

Table 2. Smoothing coefficients obtained from Gray-Murray
model.

x p Y

0.5277 0.1956 0.0101
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Figure 4. Cumulative error difference between observed
and predicted positions against maneuverability error
variance.
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Figure 5. Cumulative error difference between true and
smoothed positions against maneuverability error variance.
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Figure 6. Cumulative error difference between observed
and predicted positions against measurement error
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Figure 7. Cumulative error difference between true and
smoothed positions against measurement error variance.

4.3.3 Filter gain coefficients selection using the fading
memory model

The optimal value of the damping parameter &
was experimentally found to be 0.62 for a
maneuvering target with an initial speed of 50.4 m/s
(Pan et al. 2016). The Equations 14-16 were then
employed to compute the optimal filtering coefficients
which were obtained as shown in Table 3.
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Table 3. Smoothing coefficients obtained from fading
memory filter model.

a p Y

0.7379 0.3188 0.0467

4.3.4 Filter gain coefficients selection using the jerky
model

The optimal value of the damping parameter &
was determined through an iterative trial and error
method and found to be 0.74 for a maneuvering target
with an initial speed of 50.4 m/s and sampled at
intervals of 3 seconds (Pan et al. 2016). Equations 25-28
were then employed to compute the optimal filtering
coefficients as shown on Table 4.

Table 4. Smoothing coefficients obtained from jerky filter
model.

o B Y 1
0.7001 0.3085 0.0612 7.616304

5 FILTER PERFORMANCE COMPARISON

In this study, the comparison of the filters was based
on the following performance indices i.e. tracking and
estimation error reduction, sensitivity of the filter to
target maneuvers and output data stability.

5.1 a-B-y filter results and performance comparison

Figures 8-10 show the true, observed, predicted and
smoothed positions trajectories obtained from the
tracking problem using the various a-g-y filter models
under consideration in this study. The figures
represent the positional trajectories for the Benedict-
Bordner filter, Gray-Murray model, the Fading
memory filter model respectively. Of the three models
under investigation, the Gray-Murray model appears
to follow the target quite well with high sensitivity to
changes in target maneuvers as indicated by the
stability and steadiness of the trajectories as the target
transitions from one point to the next. In addition, the
output trajectories which include the predicted and
smoothed position trajectories can be observed to
transition very smoothly and closely to the true
trajectory for the entire duration of the tracking
period. The fading memory model performs nearly as
well as the Gray-Murray model except for a few
fluctuations of data samples at several points along
the target’s curves indicating a reduced sensitivity at
these points on the targets’ trajectories as it
maneuvers. As for the Benedict-Bordner model,
shown in Figure 8, the filter performs worst, based on
sensitivity to target maneuvers and data stability,
compared to the other two a-f-y filters as indicated
by the visibly clear jerky motion at the beginning of
the tracking process. However, as tracking continues
the trajectories stabilize and the tracking accuracy can
be seen to also improve.
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Figure 8. Target’s True, Observed, Predicted and Smoothed
Position, Benedict- Bordner model.

E 50

=)

2 -1000

G

© -1050
1100 —aA— Precdicted Position
1150 —e—True Position
1200 —4¢—Smoothed Position

Position, m

¥ Observed Position

Figure 9. Target’s True, Observed, Predicted and Smoothed
Position, Gray-Murray model.
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Figure 10. Target’s True, Observed, Predicted and

Smoothed Position, fading memory model.

Table 5 shows the total prediction and estimation
errors obtained using the different a-B-y filters.
Estimation error is obtained by computing the
deviation of the estimated data from the true position
for each sample. Similarly, prediction error indicates
how far the predicted position deviates from the true
position hence it is the tracking error. These results
show that the fading memory model has the highest
accuracy in both tracking and estimation of the
position of the high dynamic target among the a-p3-y
filters as can be seen from the small error values
obtained, followed by the Gray-Murray model. The
Benedict-Bordner model performs the worst in terms
of tracking and estimation noise reduction for both
prediction and estimation as indicated by the
resulting large errors values. This can be explained by
the fact that the design of this filter is based primarily
on the requirement for satisfying a good transient
response. And since performance of a filter is a
tradeoff between a good transient response and noise
reduction, the filter then performs poorly when
applied to meet the requirement for tracking error
reduction.



Table 5. Summary of the total tracking and estimation
accuracy obtained from the a-B-vy filters.

Filter type Tracking error Estimation error
m m
Benedict-Bordner 26,326 11,677
Gray-Murray 21071 11,693
Fading memory 19,622 10,653

5.2 Comparison of a-B-y filter results with the jerky
model

Figure 11 shows the true, observed, predicted and
smoothed trajectories obtained using the jerk model.
The curves can be observed to easily follow the highly
maneuvering target with greater sensitivity as
indicated by the steadiness in the predicted and
smoothed trajectories and a reduction of fluctuations
that were observed in the trajectories obtained using
the fading memory a-3-y filter. However, the Gray-
Murray model still maintains a greater sensitivity to
target maneuvers and has a higher stability in its
output data leading to steadier trajectories.
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Figure 11. Target’s True, Observed, Predicted and

Smoothed Position, jerky model.

The total tracking error and total estimation error
are obtained as shown in Table 6. The results indicate
an improvement in both tracking and estimation
accuracies on applying the jerk model in comparison
with the fading memory a-f-y filter model. The
accuracy in tracking is therefore improved by 1,733.27
m equivalent to approximately 9%. Similarly, the
estimation accuracy is increased by 419.49 m on
employing the jerk model filter.

Table 6. Summary of the total tracking and estimation
accuracy obtained from the a-B-y filters.

Filter type g Tracking error  Estimation error
m m

a-p-v filter 0.62 19622 10,653

a-B-yn filter  0.74 17,859 10227

6 CONCLUSION

This study investigated the performance of three
conventional a-B-y filter models under the same
initial conditions to track a high dynamic target
undergoing random  velocity = changes. The
performance of the filters was evaluated based on

ability to follow the maneuvering target steadily and
closely with minimum jerky motions and without loss
of target. It was also a function of noise reduction in
the estimation and prediction results.

Of the three filters, the Benedict-Bordner filter
performed the worst as the resulting trajectories were
characterized by overshooting at various points of the
target’s curves.

The critically damped filter, on the other hand,
performed efficiently in terms of noise reduction in
both prediction and estimation which is visibly clear
from the high accuracy obtained compared to the
Gray-Murray filter. In addition to demonstrating a
good capability of following the maneuvering target
with ease and steadiness, the critically damped filter
was also easy to implement due to its simplicity and
low computational load. However, the Gray-Murray
filter depicted a better sensitivity to target maneuvers
which was visible from the obtained smooth curves of
the position trajectories indicating a higher efficiency
in following the highly maneuvering target.

On applying the jerk model, an improvement was
realised in both noise reduction and ability to follow
the maneuvering target with less fluctuations on the
trajectories. Tracking accuracy was improved by
approximately 9% compared to the constant
acceleration filter. The jerky model was therefore a
further enhancement of the constant acceleration filter
in terms of increasing data stability through a
reduction of fluctuations especially at points of
sudden speed and course changes.

Future studies will investigate the tracking
performance of the filter while both the observing
ship and the high dynamic target are on motion.
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