177

Andriy Czaban¹, Wasyl Czaban^{1,2}, Andrzej Rusek¹, Marek Lis¹ Politechnika Częstochowska, Częstiochowa⁽¹⁾, Politechnika Lwowska, Lwów⁽²⁾

MODEL MATEMATYCZNY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI TYPU PMSM Z WYKORZYSTANIEM METOD WARIACYJNYCH

VARIATIONAL METHODS-BASED MATHEMATICAL MODEL OF THE PERMANENT MAGNET SYNCHRONOUS MOTOR (PMSM)

Streszczenie: W pracy korzystając z koncepcji elektromechanicznego przetwarzania energii i nowej interdyscyplinarnej metody wariacyjnej przedstawionej w [1], zbudowano model matematyczny napędu synchronicznego z magnesami trwałymi typu PMSM z uwzględnieniem wzajemnego wpływu nieliniowej zależności indukcji magnesów trwałych i pola magnetycznego twornika maszyny. Wyniki symulacji komputerowej przedstawiono w postaci graficznej.

Abstract: The mathematical model of a drive based on permanent magnet synchronous motor (PMSM) is proposed in the paper. The model is formed using a concept of electromechanical transformation of energy and the new interdisciplinary variational method presented in [1]. The influence of nonlinear dependency between magnetic induction of permanent magnets and magnetic field of motor armature is taken into account. The results of simulation are presented in graphical forms.

Słowa kluczowe: maszyny elektryczne, silniki synchroniczne z magnesami trwałymi (PMSM) *Keywords:* electrical machines, permanent magnet synchronous motor (PMSM)

Wstęp

Szybki rozwój technologii elektronicznej oraz techniki mikroprocesorowej oferuje dzisiaj możliwości realizacji najbardziej złożonych algorytmów systemów sterowania obiektami dynamicznymi, w tym także skomplikowanymi urządzeniami, jakimi bez wątpienia są maszyny elektryczne. Pozwoliło to stworzyć wysoko efektywne maszyny elektryczne, w działaniu których leży stworzenie wirujących pól magnetycznych za pomocą wymienionych systemów sterowania, co pozwala wyłączyć z maszyny komutator oraz uzwojenia wzbudzenia silnika. Takie podejście pozwoliło podwyższyć efektywność maszyn, a także zwiększyć ich niezawodność.

Jedną z takich maszyn elektrycznych jest silnik synchroniczny typu PMSM. Zazwyczaj modele matematyczne wymienionych maszyn buduje się na podstawie podejść klasycznych, które nie zawsze uwzględniają wpływ nieliniowej za-leżności właściwości stałych magnesów. Zależność ta, zwłaszcza w stanie przejściowym, jest dość istotna. W przypadku uwzględnienia trajektorii magnetycznej po pętli histerezowej znane modele matematyczne są dość skomplikowane i nie zawsze działają. Celem niniejszej pracy jest: zbudowanie modelu matematycznego silnika syn-chronicznego z magnesami trwałymi typu PMSM, biorąc pod uwagę wpływ wzajemny nieliniowych zależności indukcji magnesów trwałych i pola twornika maszyny elektrycznej na podstawie interdyscyplinarnej metody [1].

Model matematyczny silnika

Model matematyczny maszyny zaproponowano wychodząc z przedstawionej w [1] metody, drogą formowania rozszerzonego funkcjonału działania wg Hamiltona-Ostrogradskiego. Jego wariacja jest równa [1, 5, 7]

$$\delta S = \delta \int_{0}^{t_1} Ldt, \quad L = T - P + \Phi - D \tag{1}$$

gdzie S – funkcjonał działania według Hamiltona, L – lagrangian zmodyfikowany [7], T – energia (koenergia \tilde{T}) kinetyczna, P – energia potencjalna, Φ – energia sił rozproszenia, D – inna nie potencjalna energia.

Uogólnionymi zmiennymi opisującymi układ elektromechaniczny przyjęto: ładunki elektryczne w uzwojeniach synchronicznego silnika $q_{1-3} = Q_{1-3}$, strumień magnetyczny magnesu

trwałego po osi $d q_4 = \Phi_d$ i osi $q q_5 = \Phi_q$, kąty obrotu wirnika $q_6(t) = \gamma(t)$. Pochodne zmiennych to odpowiednio: prądy w uzwojeniach $\dot{q}_{1-3}(t) = \dot{i}_{1-3}(t)$, SEM $\dot{q}_4(t) = d\Phi_d / dt = \dot{\Phi}_d = -e(t)$, $\dot{q}_5(t) = \dot{\Phi}_q$, oraz prędkość obrotowa napędu: $\dot{q}_6(t) = \omega(t)$.

Składniki zmodyfikowanego lagrangianu (1) zapisano w postaci:

$$\tilde{T} = \sum_{j=1}^{3} \int_{0}^{i_{S_j}} \Psi_{S_j}(i_{S_j}) di_{S_j} + \frac{J_{\Sigma} \omega^2}{2}, \quad j = A, B, C$$
(2)

$$P = \sum_{n=1}^{2} \int_{0}^{\Phi_{n}} \rho(\Phi_{n}) \Phi_{n} d\Phi_{n}, n = d, q, \ \Phi = \sum_{j=1}^{3} \int_{0}^{t} \frac{1}{2} r_{s} i_{sj}^{2} d\tau,$$
(3)

$$D = \sum_{j=1}^{3} \int_{0}^{t} u_{Sj} i_{Sj} d\tau + \int_{0}^{t} \left(\int_{0}^{\omega} (M_{EM}(\omega) - M_{O}(\omega)) d\omega \right)_{|t=\tau} d\tau +$$

$$+ \int_{0}^{t} \left(\int_{0}^{\Phi_{d}} \left(F_{d} + F(\Phi_{d}) \right) \frac{d\Phi_{d}}{dt} d\dot{\Phi}_{d} \right)_{|t=\tau} d\tau + \int_{0}^{t} \left(\int_{0}^{\Phi_{q}} F_{q} \frac{d\Phi_{q}}{dt} d\dot{\Phi}_{q} \right)_{|t=\tau} d\tau$$

$$(4)$$

gdzie \tilde{T} – koenergia układu, r_s – rezystancja każdej fazy stojana, A, B, C - indeksy faz zasilania maszyny elektrycznej, d,q – indeksy prostokątnych współrzędnych przypisane do wirnika maszyny, u_S – napięcie zasilania silnika, $M_{EM}(\omega), M_{O}(\omega)$ – moment elektromagnetyczny silnika oraz jego moment obciążenia, $\Psi_{si}(i_{si})$ - pełne sprzężenia magnetyczne stojana, Φ – strumień magnetyczny maszyny, $\rho(\Phi_n)$ - rezystancja magnetyczna przewodu magnetycznego maszyny, $F(\Phi_d)$ – SMM magnesu trwałego (po poprzecznej osi q siła magnetomotoryczna magnesu trwałego $F_q \equiv 0$), $F_{d,q}$ – SMM uzwojeń stojana maszyny po osiach diq.

Podstawiając elementy zmodyfikowanego lagrangianu (2) – (4) do równania Eulera-Lagrange'a [5]:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0 \tag{5}$$

i zmieniając kolejność różniczkowania, a także wykorzystując twierdzenie o pochodnej od górnej granicy całki [2], otrzymano:

$$\frac{d}{dt}\frac{\partial L(i_{Sj})}{\partial i_{Sj}} - \frac{\partial L(Q_{Sj})}{\partial Q_{Sj}} = \frac{d}{dt}\frac{\partial}{\partial i_{Sj}}\sum_{j=1}^{3}\int_{0}^{i_{Sj}}\Psi_{Sj}(i_{Sj})di_{Sj} +$$
$$+\sum_{j=1}^{3}\int_{0}^{j}\frac{1}{2}r_{S}i_{Sj}^{2}d\tau - \sum_{j=1}^{3}\int_{0}^{j}u_{Sj}i_{Sj}d\tau = 0 \Rightarrow \frac{d\Psi_{Sj}}{dt} = u_{Sj} - r_{S}i_{Sj}$$

$$(6)$$

$$\frac{d}{dt}\frac{\partial L(\dot{\Phi}_{d})}{\partial \dot{\Phi}_{d}} - \frac{\partial L(\Phi_{d})}{\partial \Phi_{d}} = \frac{\partial}{\partial \Phi_{d}} \int_{0}^{\Phi_{d}} \rho(\Phi_{d}) \Phi_{d} d\Phi_{d} - \frac{\partial}{\partial \Phi_{d}} \int_{0}^{t} \left(\int_{0}^{\Phi_{d}} \left(F_{d} + F(\Phi_{d}) \right) \dot{\Phi}_{d} d\dot{\Phi}_{d} \right)_{|t=\tau} d\tau = 0 \Rightarrow$$

$$\Rightarrow \rho(\Phi_{d}) \Phi_{d} = F_{d} + F(\Phi_{d}), \qquad (7)$$

$$\frac{d}{dt}\frac{\partial L(\dot{\Phi}_{q})}{\partial \dot{\Phi}_{q}} - \frac{\partial L(\Phi_{q})}{\partial \Phi_{q}} = \frac{\partial}{\partial \Phi_{q}}\int_{0}^{\Phi_{q}} \rho(\Phi_{q})\Phi_{q}d\Phi_{q} - \frac{\partial}{\partial \Phi_{q}}\int_{0}^{d} \left(\int_{0}^{\Phi_{q}} F_{q}\dot{\Phi}_{q}d\dot{\Phi}_{q}\right)_{|t=\tau}d\tau = 0 \Rightarrow$$
$$\Rightarrow \rho(\Phi_{q})\Phi_{q} = F_{q} \qquad (8)$$

$$\frac{d}{dt}\frac{\partial L(\omega)}{\partial \omega} - \frac{\partial L(\varphi)}{\partial \varphi} = \frac{d}{dt}\frac{\partial}{\partial \omega}\frac{J_{\Sigma}\omega^{2}}{2} - \int_{0}^{t} \left(\int_{0}^{\omega} \left(M_{EM}(\omega) - M_{O}(\omega)\right)d\omega\right)_{|t=\tau} d\tau = 0 \Rightarrow$$
$$\Rightarrow \frac{d\omega}{dt} = \frac{1}{J_{\Sigma}} \left(M_{EM}(\omega) - M_{O}(\omega)\right) \qquad (9)$$

Zależności powiązań dla obwodów elektrycznych [3, 6]:

$$\Psi_{SA} + \Psi_{SB} + \Psi_{SC} = 0, \ i_{SA} + i_{SB} + i_{SC} = 0 \ (10)$$

Wtedy równania (6) przyjmują postać macierzowo-wektorową:

$$\frac{d\Psi_{S}}{dt} = \mathbf{u}_{S} - \mathbf{r}_{S}\mathbf{i}_{S} \Rightarrow \frac{d}{dt} \begin{bmatrix} \Psi_{SA} \\ \Psi_{SB} \end{bmatrix} = \begin{bmatrix} u_{SA} \\ u_{SB} \end{bmatrix} - \begin{bmatrix} r_{S} \\ r_{S} \end{bmatrix} \begin{bmatrix} i_{SA} \\ i_{SB} \end{bmatrix}.$$
(11)

Uwzględniając zależność $\mathbf{h}_s = \mathbf{\Pi}^{-1}\mathbf{\Pi}\mathbf{h}_s = \mathbf{\Pi}^{-1}\mathbf{h}_s^{\Pi}$, gdzie \mathbf{h}_s – dowolny wektor z fazowego układu współrzędnych fizycznych, $\mathbf{\Pi}$ – macierz Parka [3], $^{\Pi}$ – wskaźnik do przekształconego układu współrzędnych (Parka).

$$\frac{d}{dt} \left(\mathbf{\Pi}^{-1} \mathbf{\Psi}_{S}^{\Pi} \right) = \frac{d\mathbf{\Pi}^{-1}}{dt} \mathbf{\Psi}_{S}^{\Pi} + \mathbf{\Pi}^{-1} \frac{d\mathbf{\Psi}_{S}^{\Pi}}{dt} = \mathbf{u}_{S} - \mathbf{r}_{S} \mathbf{i}_{S}$$
(12)

Mnożąc wyrażenie (12) od lewej przez macierz Parka, a także biorąc do uwagi: $\Omega_s = \Pi \frac{d\Pi^{-1}}{dt}$, gdzie Ω_s – macierz prędkości obrotowych [3] otrzymano:

$$\frac{d\mathbf{\Psi}_{S}^{\Pi}}{dt} = \mathbf{u}_{S}^{\Pi} - \mathbf{\Omega}_{S}\mathbf{\Psi}_{S}^{\Pi} - \mathbf{r}_{S}\mathbf{i}_{S}^{\Pi}, \quad \mathbf{\Omega}_{S(d,q)} \equiv \omega \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$
(13)

Całkowite sprzężenia magnetyczne stojana i wirnika wyznaczono w zwykły sposób, z uwzględnieniem zależności: $\Psi_S^{\Pi} = \Psi_R^{\Pi} \equiv \Psi_R = \Psi$, [6]

$$\Psi_{S}^{\Pi} = \boldsymbol{\alpha}_{S}^{-1} \mathbf{i}_{S}^{\Pi} + \boldsymbol{\psi} \Rightarrow \begin{bmatrix} \Psi_{SA}^{\Pi} \\ \Psi_{SB}^{\Pi} \end{bmatrix} = \begin{bmatrix} \alpha_{S}^{-1} & \\ & \alpha_{S}^{-1} \end{bmatrix} \begin{bmatrix} i_{SA}^{\Pi} \\ i_{SB}^{\Pi} \end{bmatrix} + \begin{bmatrix} \Psi_{d} \\ \Psi_{q} \end{bmatrix}, \quad \mathbf{L}_{S} = \boldsymbol{\alpha}_{S}^{-1} \quad (14)$$

gdzie L_s – indukcyjność rozproszenia uzwojeń stojana.

Stąd wyznaczono prądy w uzwojeniach stojana:

$$\mathbf{i}_{S}^{\Pi} = \boldsymbol{\alpha}_{S} (\boldsymbol{\Psi}_{S}^{\Pi} - \boldsymbol{\psi}) \Rightarrow \begin{bmatrix} \boldsymbol{i}_{SA}^{\Pi} \\ \boldsymbol{i}_{SB}^{\Pi} \end{bmatrix} = \\ = \begin{bmatrix} \boldsymbol{\alpha}_{S} \\ \boldsymbol{\alpha}_{S} \end{bmatrix} \left(\begin{bmatrix} \boldsymbol{\Psi}_{SA}^{\Pi} \\ \boldsymbol{\Psi}_{SA}^{\Pi} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\psi}_{d} \\ \boldsymbol{\psi}_{q} \end{bmatrix} \right).$$
(15)

Podstawowe sprzężenia magnetyczne uzwojeń stojana poszukamy wychodząc z równań Parka [3, 6]

$$\psi_{SA} = \psi_d \cos \varphi - \psi_q \sin \varphi,$$

$$\psi_{SB} = \psi_d \cos(\varphi - 120^\circ) - \psi_q \sin(\varphi - 120^\circ) \quad (16)$$

Przekształcone podstawowe sprzężenia magnetyczne maszyny wyznaczono z równań równowagi sił magnetomotorycznych i napięć magnetycznych w prostokątnym układzie magnetycznego obwodu silnika, wychodząc z równania równowagi napięć magnetycznych [6]:

$$\alpha_d \psi_d = \alpha_S \left(\Psi_{SA}^\Pi - \psi_d \right) + F(\Phi_d), \quad \alpha_d = L_d^{-1}, \, (17)$$

$$\alpha_q \psi_q = \alpha_S \left(\Psi_{SB}^{\Pi} - \psi_q \right), \quad \alpha_q = L_q^{-1} \,, \tag{18}$$

gdzie L_d , L_q – podstawowe statyczne indukcyjności maszyny po wzdłużnej i porzecznej osi, $F(\Phi_q) \equiv 0$.

Strefę roboczą magnesu trwałego wyznaczymy z pętli histerezy. Aproksymując jej strefy przez prostą

$$H = aB + b, \quad a = -\frac{H_{cb}}{B_r}, \quad b = H_{cb} \quad (19)$$

gdzie a,b – współczynniki aproksymacji prostej, H_{cb} – siła koercyjna, B_r – indukcja ostatkowa.

Na podstawie praw przypływu prądu i indukcji elektromagnetycznej Faradaya, a także uwzględniając współczynnik konstrukcji maszyny [3, 6] można zapisać:

$$\int_{L} \mathbf{H} \cdot d\mathbf{L} = F_{\Sigma} \Rightarrow F_{d\Sigma} = F_{d} + F(\mathbf{\Phi}_{d}) \Rightarrow$$
$$\Rightarrow F(\mathbf{\Phi}_{d}) = Hd_{0}, \qquad (20)$$

$$\int_{S} \mathbf{B} \cdot d\mathbf{S} = \mathbf{\Phi} \Rightarrow \psi_d = \frac{4l\tau w}{\pi^2} \int_{-\pi/2}^{\pi/2} B_\alpha \cos \alpha d\alpha \quad (21)$$

gdzie

$$B_d \equiv \int_{-\pi/2}^{\pi/2} B_\alpha \cos \alpha d\alpha, \qquad \Phi_d = l\tau B_d \qquad (22)$$

 d_0 – grubość magnesu, *S* – pole przekroju magnesu, F_{Σ} – całkowita siła magnetomotoryczna magnetoprzewodu układu, $F_{\Sigma d}$ – całkowita siła magnetomotoryczna po osi *d*, działająca w obwodzie całkowania, τ – podziałka biegunowa, *l* – długość wirnika, *w* – liczba cewek uzwojenia twornika, α – bieżąca współrzędna kątowa.

Uwzględniając drugie prawo Kirchhoffa dla obwodów magnetycznych i mnożąc od lewej i prawej strony przez d_0 , z uwzględnieniem (19), (20) otrzymano

$$F(\Phi_d) = Hd_0 = a\frac{d_0}{S}\Phi_d + bd_0, \quad B = \frac{\Phi_d}{S}.$$
 (23)

Robocze sprzężenie magnetyczne wirnika po osiach d i q na podstawie [3] określają zależności (24):

$$\Psi = \frac{4w}{\pi^2} \Phi \Longrightarrow \Phi_d = \frac{\pi^2}{4w} \Psi_d, \ \Phi_q = \frac{\pi^2}{4w} \Psi_q \ (24)$$

Z równania magnetycznej równowagi po osi d (7), a także z uwzględnieniem wyrażeń (21) – (24) można zapisać:

$$V_{m} = \rho_{d}(\Phi_{d})\Phi_{d} = F_{d} + F(\Phi_{d}) \Longrightarrow \rho_{d}(\Phi_{d})\Phi_{d} =$$
$$= \frac{3w}{\pi p_{0}}i_{d} - \frac{H_{cb}}{B_{r}}\frac{d_{0}}{S}\Phi_{d} + H_{cb}d_{0}$$
(25)

gdzie: p_0 – liczba par magnetycznych biegunów maszyny.

Z uwzględnieniem wyrażenia (24) równanie (25) zapisano w sposób następujący:

$$\frac{\pi^2}{4w}\frac{\pi p_0}{3w}\rho_d\psi_d = i_d - \frac{\pi^2}{4w}\frac{\pi p_0}{3w}\frac{H_{cb}}{B_r}\frac{d_0}{S}\psi_d + \frac{\pi p_0}{3w}H_{cb}d_0.$$
(26)

Wprowadzając następujące oznaczenia:

$$\alpha_d = \frac{\pi^2}{4w} \frac{\pi p_0}{3w} \rho_d \tag{27}$$

 α_d – podstawowa odwrotna statyczna indukcyjność maszyny po osi *d*,

$$\alpha_d^* = \frac{\pi^2}{4w} \frac{\pi p_0}{3w} \frac{H_{cb}}{B_r} \frac{d_0}{S}$$
(28)

 α_d^* – obliczeniowa odwrotna statyczna indukcyjność magnesów maszyny,

$$F_0 = \frac{\pi p_0}{3w} H_{cb} d_0$$
 (29)

 F_0 – stały składnik aproksymacji,

wyrażenie (26) z uwzględnieniem (27) – (29) przybiera postać:

$$\alpha_d \psi_d = i_d - \alpha_d^* \psi_d + F_0 \,. \tag{30}$$

Wyrażenie (30) z uwzględnieniem (17) dla osi *d*:

$$\Psi_d = \frac{1}{\alpha_d + \alpha_S + \alpha_d^*} \Big(\alpha_S \Psi_{SA}^{\Pi} + F_0 \Big). \quad (31)$$

Podobnie (18) dla osi q

$$\Psi_q = \frac{\alpha_S}{\alpha_q + \alpha_S} \Psi_{SB}^{\Pi} \,. \tag{32}$$

Moment elektromagnetyczny silnika synchronicznego z magnesami trwałymi opisuje zależność [6]

$$M_{EM} = \frac{3}{2} p_0(\psi_d i_q - \psi_q i_d) .$$
 (33)

Zależności funkcjonalne w fazowych współrzędnych otrzymuje się stosując odwrotne przekształcenia Parka [3].

Wspólnemu rozwiązaniu podlega następujący układ równań różniczkowych: (9), (13), (34) z uwzględnieniem wyrażeń (27) – (29), (31) – (33).

Wyniki symulacji komputerowej

Do analizy procesów nieustalonych został wykorzystany silnik synchroniczny z magnesami trwałymi typu PMSM, który napędzał obciążenie. Typ silnika: SMwsg132S4. Dane znamionowe: $P_N = 4.0$ kW, $U_N = 3x400$ V, $I_N = 7.5$ A, $\omega_N = 1500$ obr/min, $M_N = 25.5$ Nm, $r_S = 0.976\Omega$, $L_1=3.3$ mH, $L_{aq}= 69.9$ mH, $L_{ad}= 23.0$ mH, $I_d = -4.3$ A, $I_q = 6.2$ A, $\omega \Psi_m = 136$ V, $J_{\Sigma} = 0.1$ kg·m². Rozruch napędu przeprowadzono w następujący sposób. Przy znamionowej amplitudzie napięcia zasilania zwiększano od zera częstotliwość wg zależności opisanej równaniem: $\omega_0(t) = 314, 15(1 - \exp(-0, 1t^{2.3}))$ s⁻¹. Wyniki symulacji przedstawiono w postaci graficznej.

Rys. 1. Przejściowa prędkość obrotowa mechanizmu

Na rys. 1 przedstawiono przejściową prędkość obrotową mechanizmu hamującego napędu synchronicznego typu PMSM z aktywnym momentem obciążenia na wale silnika. Postać rozruchu napędu w głównej mierze zależy od zależności opisującej wzrost częstotliwości zasilania. Po dokonaniu rozruchu układ wiruje ze znamionową prędkością obrotową.

Rys. 2. Przejściowy prąd fazy A w uzwojeniu twornika

Rys. 2 przedstawia przejściowy prąd fazy *A* uzwojenia twornika maszyny synchronicznej typu PMSM. Należy tutaj zaznaczyć, że w przypadku ogólnym rozruch silnika synchronicznego z magnesami trwałymi [4] prowadzi się za pomocą specjalnych układów sterowania. Celem niniejszej pracy nie jest modelowanie układu sterowania do silnika. W pracy skupiono się na modelowaniu części siłowej silnika PMSM. Takie podejście do zagadnienia prowadzi do wielkiego wzrostu prądu w pierwszym momencie po załączeniu zasilania układu napędowego.

Na rys. 3 przedstawiono przejściowy moment elektromagnetyczny silnika. Widać tutaj wielki wzrost momentu w pierwszym momencie rozruchu. Powiązane jest to z przyjętą funkcją zmiany częstotliwości zasilania silnika. W stanie ustalonym, oczywiście częstotliwość jest stała równa znamionowej. Wartość ustalona momentu elektromagnetycznego jest równa znamionowej.

Rys. 3. Przejściowy moment elektromagnetyczny silnika

Podsumowanie

Zastosowanie przedstawionej w [1] interdyscyplinarnej metody wariacyjnej umożliwiło przedstawienie modelu matematycznego układu napędowego z silnikiem synchronicznym z magnesami trwałymi typu PMSM unikając dekompozycji scalonego układu elektromechanicznego na odrębne podukłady: elektryczny, magnetyczny oraz mechaniczny. Takie podejście jest stosowane w układach elektromechanicznych ze złożoną transmisją ruchu [1]. Wykorzystanie w warunkach stacjonarnych powiązań równania namagnesowania maszyny z uwzględnieniem zjawiska histerezy umożliwiło przedstawienie modelu matematycznego maszyny synchronicznej o magnesach trwałych.

Literatura

[1]. *Chaban A*. Mathematical Model of Oscillatory Processes in Electromechanical Systems Lviv: W-wo T. Soroki, 2008.

[2]. *Elsgolc L. E.* Rachunek wariacyjny. Warszawa: Państwowe Wydawnictwo Naukowe, 1960, s. 168.

[3]. *Kopylow I.* Modelowanie matematyczne maszyn elektrycznych – M.: Wyższa Szkoła, 2001, s. 327.

[4]. *Lis M.* Oznaczenie parametrów techniczno-konstrukcyjnych silnika synchronicznego z magnesami trwałymi z trójfazowym uzwojeniem stojana o sterowaniu trapezoidalnym // Przegląd Elektrotechniczny Vol. 2012, Nr 12b, s. 71 – 74.

[5]. Ortega R., Loria A., Nicklasson P.J., Sira-Ramirez H. Passivity-Beast Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. London: Springer Verlag, 1998, s. 543.

[6]. *V. Tchaban* Electromagnetic field. – T. Soroka's publish. house, Lviv, 2006.

[7]. V White D.C., Woodson H.H. Electromagnetic Energy Conversion, New-York, John Wiley & Sons, Inc, 1958.

Autorzy

Andriy Czaban prof. nadzw., dr hab. inż. Politechnika Częstochowska Wydział Elektryczny, al. Armii Krajowej 17

oraz Politechnika Lwowska,

katedra Elektrotechniki, ul Bandery, 12 Lwów Ukraina, e-mail: <u>atchaban@gmail.com;</u>

Wasyl Czaban prof. dr hab. inż., Politechnika Częstochowska, Wydział Elektryczny, al. Armii Krajowej 17, oraz Politechnika Lwowska katedra Elektrotechniki, ul Bandery, 12 Lwów Ukraina;

Andrzej Rusek prof. dr hab. inż., Politechnika Częstochowska, Wydział Elektryczny, al. Armii Krajowej 17, e-mail: <u>rusek@el.pcz.czest.pl;</u> Marek Lis dr inż. Politechnika Częstochowska Wydział Elektryczny, al. Armii Krajowej 17 e-mail: lism@el. pcz.czest.pl.