Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present work investigates the microstructural changes in an AISI 304L austenitic stainless steel during the early stages of tensile deformation (where austenite does not transform to strain induced martensite). In situ tensile experiments were conducted to record grain orientation changes and slip activation in the steel. The effect of grain size, neighboring grains, and annealing twins on orientation changes during deformation was investigated. Results showed that at a given strain level, grains lying in relatively softer regions and possessing higher Schmid factor values accommodated the plastic deformation initially and showed orientation changes toward the stable orientation. The relatively larger grains changed their orientations only at higher strain levels. Grain orientation changes were also influenced by size and crystallographic orientation of neighboring grains. For grains containing annealing twins, the orientation changes of twin and its grain were in different directions during deformation at a given strain level. Further, grains containing multiple twins showed delayed deformation. The study of tensile deformation behavior in this respect opens up new routes to alter and hence enhance the mechanical properties of materials by engineering their microstructure.
Czasopismo
Rocznik
Tom
Strony
672--679
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
autor
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India
autor
- CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
autor
- CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
autor
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
Bibliografia
- [1] F.B. Saada, Z. Antar, K. Elleuch, P. Ponthiaux, N. Gey, The effect of nanocrystallized surface on the tribocorrosion behavior of 304L stainless steel, Wear 394–395 (2018) 71–79.
- [2] J. Biehler, H. Hoche, M. Oechsner, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surf. Coat. Technol. 325 (2017) 121–128.
- [3] X. Qin, X. Guo, J. Lu, L. Chen, J. Qin, W. Lu, Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding, J. Alloys Compd. 698 (2017) 1094–1101.
- [4] G.R. Mirshekari, E. Tavakoli, M. Atapour, B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel, Mater. Des. 55 (2014) 905–911.
- [5] R. Nafar Dehsorkhi, S. Sabooni, F. Karimzadeh, A. Rezaeian, M.H. Enayati, The effect of grain size and martensitic transformation on the wear behavior of AISI 304L stainless steel, Mater. Des. 64 (2014) 56–62.
- [6] L. Gardner, A. Talja, N.R. Baddoo, Structural design of high-strength austenitic stainless steel, Thin-Walled Struct. 44 (2006) 517–528.
- [7] A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009) 2222–2247.
- [8] D. Kaoumi, J. Liu, Deformation induced martensitic transformation in 304 austenitic stainless steel: in-situ vs. ex-situ transmission electron microscopy characterization, Mater. Sci. Eng. A 715 (2018) 73–82.
- [9] F.B. Pickering, Physical Metallurgy and the Design of Steels, first ed., Applied Science Publishers Limited, London, 1978.
- [10] G.E. Dieter, Mechanical Metallurgy, fourth ed., McGraw-Hill Book Company, London, 1988.
- [11] Y.S. Kim, S.M. Nam, S.J. Kim, Strain rate dependence of deformation behavior of high-nitrogen austenitic steels, J. Mater. Process. Technol. 187–188 (2007) 575–577.
- [12] W.S. Park, S.W. Yoo, M.H. Kim, J.M. Lee, Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments, Mater. Des. 31 (2010) 3630–3640.
- [13] S. Kumar, A.S. Shahi, Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds, Mater. Des. 89 (2016) 399–412.
- [14] Y.K. Lee, J.E. Jin, Y.Q. Ma, Transformation-induced extraordinary ductility in an ultrafine-grained alloy with nanosized precipitates, Scr. Mater. 57 (2007) 707–710.
- [15] A. Rezaee, A. Najafizadeh, A. Kermanpur, M. Moallemi, The influence of reversion annealing behavior on the formation of nanograined structure in AISI 201L austenitic stainless steel through martensite treatment, Mater. Des. 32 (2011) 4437–4442.
- [16] B.R. Kumar, S. Sharma, B.P. Kashyap, N. Prabhu, Ultrafine grained microstructure tailoring in austenitic stainless steel for enhanced plasticity, Mater. Des. 68 (2015) 63–71.
- [17] E. Nagy, V. Mertinger, F. Tranta, J. Solyom, Deformation induced martensitic transformation in stainless steels, Mater. Sci. Eng. A 378 (2004) 308–313.
- [18] M.R. Rocha, C.A.S. Oliveira, Evaluation of the martensitic transformation in austenitic stainless steel, Mater. Sci. Eng. A 517 (2009) 281–285.
- [19] S. Sharma, B.R. Kumar, B.P. Kashyap, N. Prabhu, Effects of concurrent strain induced martensite formation on tensile and texture properties of 304L stainless steel of varying grain size distribution, Mater. Sci. Eng. A 725 (2018) 215–227.
- [20] J. Li, C. Fang, Y. Liu, Z. Huang, S. Wang, Q. Mao, Y. Li, Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure, Mater. Sci. Eng. A 742 (2019) 409–413.
- [21] Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Twinning and martensite in a 304 austenitic stainless steel, Mater. Sci. Eng. A 552 (2012) 514–522.
- [22] P. Marshall, Austenitic Stainless Steels: Microstructure and Mechanical Properties, first ed., Elsevier Science Publishing Co., Inc., USA, 1984.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-522d184b-a423-4605-9ef6-55a4e6ebed81