Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ascidians are one of the dominant marine sedentary filter feeders recorded more frequently as introduced species than other taxa. It is renowned that artificial structures offer novel niches to the non-native species. A yearlong investigation was carried out to understand the role of ascidian colonization on various artificial structures located along 84 stations stretched on the 1076 km long Tamil Nadu coast of South India. It revealed the occurrence of 26 ascidian species, among these18 specimens were identified to species level, 8 were identified to genus level based on morphological characters. As on origin and nativity, out of the total 26,3 species were classified as introduced, 8 specieswere classifiedas native and 15 as cryptogenic species. Interestingly, Polyclinum isipingense and Diplosoma variostigmatumwere reported first time inIndianwaters.Thecryptogenic and colonial forms of ascidians are dominant in the artificial structures. There were significant differences observed between artificial structure type, geographic locations ( p = 0.0071) and between ascidians forms as well as geographic areas ( p = 0.00375). This study also confirms the artificial structures offer new niches for non-native ascidian colonization. The influence of the substrate (structure type) aswell as geographic locations on the biotic assemblage was also observed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
60--67
Opis fizyczny
Bibliogr. 42 poz., mapa, rys., tab., wykr.
Twórcy
- Coastal Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
autor
- Coastal Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
autor
- Coastal Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
autor
- Coastal Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
- Department of Marine and Coastal Studies, Madurai Kamaraj University, Madurai, India
autor
- Department of Biotechnology, Islamiah College, Vaniyambadi, India
autor
- Department of Biotechnology, Islamiah College, Vaniyambadi, India
autor
- Coastal Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
Bibliografia
- [1] Airoldi, L., Turon, X., Perkol-Finkel, S., Rius, M., 2015. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers. Distrib. 21, 755-768, http://dx.doi.org/10.1111/ddi.12301.
- [2] Aldred, N., Clare, A. S., 2014. Mini-review: impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling 30 (3), 259-270, http://dx.doi.org/10.1080/08927014.2013.866653.
- [3] Ali, H. A. J., Sivakumar, V., Tamilselvi, M., 2009. Distribution of alien and cryptogenic ascidians along the Southern Coasts of Indian Peninsula. World J. Fish. Mar. Sci. 1 (4), 305-312.
- [4] Beiras, R., Bellas, J., Fernández, N., Lorenzo, J. I., Cobelo-Garcıa, A., 2003. Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar. Environ. Res. 56 (4), 531-553, http://dx.doi.org/10.1016/S0141-1136(03)00042-4.
- [5] Carlton, J. T., 1996. Biological invasions and cryptogenic species. Ecology 77 (6), 1653-1655.
- [6] Clarke, K. R., Gorley, R. N., Somerfield, P. J., Warwick, R. M., 2014. PRIMER-E, Plymouth. In: Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 3rd edn. 260 pp.
- [7] Dafforn, K. A., Johnston, E. L., Glasby, T. M., 2009. Shallow moving structures promote marine invader dominance. Biofouling 25 (3), 277-287.
- [8] Dumont, C. P., Harris, L. G., Gaymer, C. F., 2011. Anthropogenic structures as a spatial refuge from predation for the invasive bryozoan Bugula neritina. Mar. Ecol. Prog. Ser 427, 95-103.
- [9] Davidson, I.C., Zabin, C. J., Chang, A. L., Brown, C. W., Sytsma, M. D., Ruiz, G. M., 2010. Recreational boats as potential vectors of marine organisms at an invasion hotspot. Aquat. Biol. 11, 179-191, http://dx.doi.org/10.3354/ab00302.
- [10] Ferrario, F., Iveša, L., Jaklin, A., Perkol-Finkel, S., Airoldi, L., 2016. The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. J. Appl. Ecol. 53 (1), 16-24, http://dx.doi.org/10.1111/1365-2664.12533.
- [11] Firth, L. B., Mieszkowska, N., Grant, L., Bush, L., Davies, A. J., Frost, M. T., Cunningham, P. N., Moschella, P., Hawkins, S. J., 2015. Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecol. Evol. 5 (15), 3210-3222, http://dx.doi.org/10.1002/ece3.1556.
- [12] Firth, L. B., Schofield, M., White, F. J., Skov, M. W., Hawkins, S. J., 2014. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment. Mar. Environ. Res. 102, 122-130, http://dx.doi.org/10.1016/j.marenvres.2014.03.016.
- [13] Forrest, B. M., Gardner, J., Taylor, M. D., 2009. Internal borders for managing invasive marine species. J. Appl. Ecol. 46 (1), 46-54, http://dx.doi.org/10.1111/j.1365-2664.2008.01544.x.
- [14] Glasby, T. M., Connell, S. D., Holloway, M. G., Hewitt, C. L., 2007. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar. Biol. 151 (3), 887-895.
- [15] Hammer, Ø., Harper, D. A. T., Ryan, P. D., 2001. Paleontological statistics software: package for education and data analysis. Palaeontol. Electron. 4, 9.
- [16] Hewitt, C. L., Gollasch, S., Minchin, D., 2009. The vessel as a vector — biofouling, ballast water and sediments. In: Rilov, G, Crooks, JA (Eds.), Biological Invasions in Marine Ecosystems. Ecol. Stud., Vol. 204. Springer, Berlin, Heidelberg, 117-131, http://dx.doi.org/10.1007/978-3-540-79236-9_6.
- [17] Hirose, E., Oka, A. T., 2008. A new species of photosymbiotic ascidian from the Ryukyu Archipelago, Japan, with remarks on the stability of stigma number in photosymbiotic Diplosoma species. Zool. Sci. 25 (12), 1261-1267, http://dx.doi.org/10.2108/zsj.25.1261.
- [18] Hulme, P. E., 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46 (1), 10-18, http://dx.doi.org/10.1111/j.1365-2664.2008.01600.x.
- [19] Jaffar, H. A., Akram, A. S., Arshan, M. K., Sivakumar, V., Tamilselvi, M., 2016. Distribution and invasiveness of a colonial ascidian, Didemnum psammathodes, along the southern Indian coastal water. Oceanologia 58 (3), 212-220, http://dx.doi.org/10.1016/j.oceano.2016.04.002.
- [20] Jebakumar, J. P. P., Nandhagopal, G., Ragumaran, S., Rajanbabu, B., Ravichandran, V., 2015. First record of alien species Eualetestulipa (Rousseau in Chenu, 1843) from the Royapuram fishing harbour at Chennai, India. Bioinvasions Rec. 4 (3), 201-204, http://dx.doi.org/10.3391/bir.2015.4.3.08.
- [21] Kott, P., 1985. The Australian Ascidiacea part 1, Phlebobranchia and Stolidobranchia. Mem. Qd. Mus. 23, 1-440.
- [22] Lambert, G., 2002. Nonindigenous ascidians in tropical waters. Pac. Sci. 56 (3), 291-298, http://dx.doi.org/10.1353/psc.2002.0026.
- [23] Lambert, G., 2005. Ecology and natural history of the protochordates. Can. J. Zool. 83 (1), 34-50, http://dx.doi.org/10.1139/Z04-156.
- [24] Lambert, G., 2007. Invasive sea squirts: a growing global problem. J. Exp. Mar. Bio Ecol. 342 (1), 3-4.
- [25] Lambert, C. C., Lambert, G., 2003. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Prog. Ser. 259, 145-161.
- [26] Lindeyer, F., Gittenberger, A., 2011. Ascidians in the succession of marine fouling communities. Aquat. Invasions 6 (4), 421-434, http://dx.doi.org/10.3391/ai.2011.6.4.07.
- [27] López-Legentil, S., Legentil, M. L., Erwin, P. M., Turon, X., 2015. Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. Biol. Invasions. 17 (6), 1623-1638, http://dx.doi.org/10.1007/s10530-014-0821-z.
- [28] Lutz-Collins, V., Ramsay, A., Quijón, P. A., Davidson, J., 2009. Invasive tunicates fouling mussel lines: evidence of their impact on native tunicates and other epifaunal invertebrates. Aquat. Invasions 4, 213-220.
- [29] McKinney, M. L., 2006. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127 (3), 247-260, http://dx.doi.org/10.1016/j.biocon.2005.09.005.
- [30] McKinney, M. L., Lockwood, J. L., 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14 (11), 450-453, http://dx.doi.org/10.1016/S0169-5347(99)01679-1.
- [31] Mckindsey, C. W., Landry, T., O'Beirn, F. X., Davies, I. M., 2007. Bivalve aquaculture and exotic species: a review of ecological considerations and management issues. J. Shellfish Res. 26 (2), 281-294.
- [32] Millar, R. H., 1975. Ascidians from the Indo-West-Pacific region in the Zoological Museum, Copenhagen (Tunicata, Ascidiacea). Steenstrupia 3 (20), 205-306.
- [33] Minchin, D., Gollasch, S., 2003. Fouling and ships' hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling 19 (S1), 111-122, http://dx.doi.org/10.1080/0892701021000057891.
- [34] Monniot, F., Monniot, C., 1996. New collections of ascidians from the western Pacific and southeastern Asia. Micronesia 29, 133-279.
- [35] Murray, C. C., Therriault, T. W., Martone, P. T., 2012. Adapted for invasion? Comparing attachment, drag and dislodgment of native and nonindigenous hull fouling species. Biol. Invasions 14 (8), 1651-1663, http://dx.doi.org/10.1007/s10530-012-0178-0.
- [36] Nagar, L. R., Shenkar, N., 2016. Temperature and salinity sensitivity of the invasive ascidian Microcosmus exasperatus Heller, 1878. Aquat. Invasions 11 (1), 33-43, http://dx.doi.org/10.3391/ai.2016.11.1.04.
- [37] Renganathan, T. K., 1986. Studies on the Ascidians of South India. (PhD Thesis). Madurai Kamaraj University, Madurai, India.
- [38] Shenkar, N., Loya, Y., 2009. Non-indigenous ascidians (Chordata: Tunicata) along the Mediterranean coast of Israel. Mar. Biodivers. Rec. 2, http://dx.doi.org/10.1017/S1755267209990753.
- [39] Sluiter, C. P., 1898. Beitrage zur kenntnis der fauna von Sud-Afrika. Ergebnisse einer Reise von Prof. Max Weber im Jahre 1894. II. Tunicaten von South-Africa. Zool. Jahrb. Syst. 11, 1-64.
- [40] Tokioka, T., 1967. Pacific Tunicata of the United States National Museum. Bull. US Nation Museum 251, 1-242.
- [41] Wasson, K., Fenn, K., Pearse, J. S., 2005. Habitat differences in marine invasions of central California. Biol. Invasions 7 (6), 935-948, http://dx.doi.org/10.1007/s10530-004-2995-2.
- [42] Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A., Losos, E., 1998. Quantifying threats to imperiled species in the United States. BioScience 48 (8), 607-615.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-522d0216-3ca4-4819-8959-b63545943a9f