Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Konferencja
International Seminar of Applied Mechanics (13 ; 29-31.05.2009 ; Szczyrk, Polska)
Języki publikacji
Abstrakty
Chaos is present in many aspect of life. Physics is usually the field where chaos control became a paradigma and discipline itself. It is very difficult to detect and control chaotic behavior in nonlinear engineering dynamical Systems. This contribution introduces some basic concepts for controlling chaos and describes some mathematical methods for controlling chaos in dynamic systems
Słowa kluczowe
Rocznik
Tom
Strony
77--80
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, tel. 541 142 853, fax. 541 142 876
autor
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, tel. 541 142 853, fax. 541 142 876
autor
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, tel. 541 142 853, fax. 541 142 876
Bibliografia
- 1. Andrievskii, B.R.; Fradkov, A.L.: Control of Chaos: Methods and Applications. II. Appli¬cations. Automation and Remote Control, 65 (4), pp. 505-533, 2004.
- 2. Calvo, O.: Fuzzy Control of Chaos, in book Integration of Fuzzy Logic and Chaos Tudory, pp. 99-125, Springer-Verlag, Berlin, 2006.
- 3. Paskota, M: On Modelling and the Control of Vibroformers in Aluminium Production. Chaos, Solitons, Fractals, 9, pp. 323-325, 1998.
- 4. Kapitaniak, T.: Controlling Chaos: Theoretical and Practical Methods in Non-Linear Dynamics. Academie Press, New York, 1996.
- 5. Castillo, O; Melin Ρ.: Theory of Fuzzy Chaos for the Simulation and Control of Nonlinear Dynamics Systems. Studies in Fuzziness and Soft Computing, 187, pp. 391-414, 1996.
- 6. Ott, E.; Grebogi, C', Yorke, J.A.: Controlling Chaos. Physical Review Letters, 64, pp. 1196-1199, 1990.
- 7. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Physical Letters A, 170, pp. 421^128, 1992.
- 8. Kocarev, L.; Kapitaniak, T.: On an equivalence of chaotic attractors. Journal ofPhysics A: Mathematical and General, 28, pp. L249-L254, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-521e338f-b3df-4365-a2b5-f98486e4e2ae