PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of geometrical parameters effect on contact zone under fretting fatigue loading

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fatigue process under fretting conditions is characterized by small oscillatory movements due to vibrating or cyclic loads between two surfaces in contact. Two phenomena can arise as a consequence: the surface wear of the bodies in contact, giving rise to the so-called fretting wear. The second phenomenon concerns crack nucleation in the contact region, causing a reduction in the fatigue strength of the component subjected to cyclic loading. This process is called “fretting fatigue”. In the present study, finite element models (2D-FEM) are provided to demonstrate the effect of pad radius on the contact parameters such as: contact pressure, shear traction, stresses, sliding, size of contact line and crack nucleation and its location along the contact line of aeronautical Al2024 alloy under fretting fatigue loading. Six numerical models are utilized to describe the effect of changing pad radii on contact stresses and damage of crack nucleation. The Ruiz parameter criterion should be used to predict the location of crack initiation in the contact zone. Comparison of the finite element results shows that there is a good agreement between the numerical modeling predictions with those analytical results. The stress field, relative slip, and damage parameters in fretting fatigue loading were highlighted. The pad radius substantially affects the distribution of contact parameters. Particular attention must be taken into consideration to this variable when analyzing the structure in fretting fatigue.
Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Laboratory LPQ3M, BP763, University of Mascara, Mascara 29000, Algeria
  • Laboratory LPQ3M, BP763, University of Mascara, Mascara 29000, Algeria
  • Department of Mechanical Engineering, University of Tiaret, Algeria
  • Laboratory LPQ3M, BP763, University of Mascara, Mascara 29000, Algeria
Bibliografia
  • 1. Vingsbo, O., Söderberg, S. On fretting maps. Wear 126 (1988) 131-147.
  • 2. Abbasi, F., Majzoobi, G. H., Mendiguren, J. A review of the effects of cyclic contact loading on fretting fatigue behavior. Advances in Mechanical Engineering 12 (2020) 1687814020957175.
  • 3. Benhamena, A., Talha, A., Benseddiq, N., Amrouche, A., Mesmacque, G., Benguediab, M. Effect of clamping force on fretting fatigue behaviour of bolted assemblies: Case of couple steel–aluminium. Materials Science and Engineering: A 527 (2010) 6413-6421.
  • 4. Gu, H., Jiao, L., Yan, P., Ma, B., Chen, S., Feng, L., Wang, X. Crack behavior of Ti-6Al-4V alloy combined conformal contact fretting, non-conformal contact fretting and simple fatigue. International Journal of Fatigue 139 (2020) 105741.
  • 5. Hamadouche, F., Benzaama, H., Mokhtari, M., Tahar, M. A. Influence of contact parameters in fretting-fatigue contact 3D problems. Frattura ed Integrità Strutturale 15 (2021) 228-240.
  • 6. Benhamena, A., Amrouche, A., Talha, A.,Benseddiq, N. Effect of contact forces on fretting fatigue behavior of bolted plates: Numerical and experimental analysis. Tribology International 48 (2012) 237-245.
  • 7. Vázquez, J., Carpinteri, A., Bohórquez, L., Vantadori, S. Fretting fatigue investigation on Al 7075-T651 alloy: Experimental, analytical and numerical analysis. Tribology International 135 (2019) 478-487.
  • 8. Luke, M., Burdack, M., Moroz, S., Varfolomeev, I. Experimental and numerical study on crack initiation under fretting fatigue loading. International Journal of Fatigue 86 (2016) 24-33.
  • 9. Pinto, A. L., Cardoso, R. A., Talemi, R., Araújo, J. A. Fretting fatigue under variable amplitude loading considering partial and gross slip regimes: Numerical analysis. Tribology International 146 (2020) 106199.
  • 10. Cattaneo, C. Sul contatto de due corpielastici: Distribuzione locale deglisforzi. Rendicontidel l'Accademianazionale dei Lincei 6 (1938) 342-349.
  • 11. Mindlin, R. D. Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics 16 (1949) 259–268.
  • 12. Dhaka, P., Prakash, R. V. Effect of Contact Geometry on the Contact Stresses in a Flat with Round Edge Contact. Frattura ed Integrità Strutturale 13 (2019) 630-638.
  • 13. Zhang, T., McHugh, P. E., Leen, S. B. Computational study on the effect of contact geometry on fretting behaviour. Wear 271 (2011) 1462-1480.
  • 14. Chakherlou, T. N., Shahriary, P., Akbari, A. Experimental and numerical investigation on the fretting fatigue behavior of cold expanded Al-alloy 2024-T3 plates. Engineering Failure Analysis 123 (2021) 105324.
  • 15. Walvekar, A. A., Leonard, B. D., Sadeghi, F., Jalalahmadi, B., Bolander, N. An experimental study and fatigue damage model for fretting fatigue. Tribology International 79 (2014) 183-196.
  • 16. Vantadori, S., Zanichelli, A. Fretting‐fatigue analysis of shot‐peened aluminium and titanium test specimens. Fatigue & Fracture of Engineering Materials & Structures 44 (2021) 397-409.
  • 17. Deng, Q., Yin, X., Wang, D., Wahab, M. A. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. International Journal of Fatigue 156 (2022) 106640.
  • 18. Zaleski, K, Skoczylas, A. Effect of slide burnishing on the surface layer and fatigue life of titanium alloy parts. Advances in Materials Science 19 (2019) 35-45.
  • 19. Dobromirski, J. M. Variables of fretting process: are there 50 of them? ASTM Special Technical Publication 1159 (1992) 60-60.
  • 20. Hertz, H. Über die Berührung fester elastischer Körper. Journal für die reine und ange wandte Mathematik 92 (1982) 156-171.
  • 21. Ruiz, C., Boddington, P. H. B., Chen, K. C. An investigation of fatigue and fretting in a dovetail joint. Experimental Mechanics 24 (1984) 208-217.
  • 22. ABAQUS/Standard User's Manual, Version 6.14.
  • 23. Vázquez, J., Erena, D., Navarro, C., Domínguez, J. 3D contact effects in fretting fatigue tests. Theoretical and Applied Fracture Mechanics 118 (2020) 103260.
  • 24. Kim, H. S., Mall, S., Ghoshal, A. Two-dimensional and three-dimensional finite element analysis of finite contact width on fretting fatigue. Materials Transactions (2011) 1012201243-1012201243.
  • 25. Namjoshi, S. A., Jain, V. K., Mall, S. Effects of shot-peening on fretting-fatigue behavior of Ti-6Al-4V. Journal of Engineering Materials and Technology 124 (2002) 222-228.
  • 26. Hojjati-Talemi, R., Wahab, M. A., De Pauw, J., De Baets, P. Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribology International 76 (2014) 73-91.
  • 27. Hojjati-Talemi, R., Wahab, M. A. Fretting fatigue crack initiation lifetime predictor tool: Using damage mechanics approach. Tribology International 60 (2013) 176-186.
  • 28. Hills, D. A and Nowell, D. Mechanics of fretting fatigue. Solid mechanics and its applications 30 (1994).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52196858-9b2a-45ed-ad9c-7fe90455491d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.