PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analyzing the impact of different PCV calibration models on height determination using GPS/GLONASS observations from ASG-EUPOS network

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The integration of GPS with GLONASS is very important in satellite-based positioning because it can clearly improve reliability and availability. However, unlike GPS, GLONASS satellites transmit signals at different frequencies. This results in significant difficulties in modeling and ambiguity resolution for integrated GNSS positioning. There are also some difficulties related to the antenna Phase Center Variations (PCV) problem because, as is well known, the PCV is dependent on the received signal frequency dependent. Thus, processing simultaneous observations from different positioning systems, e.g. GPS and GLONASS, we can expect complications resulting from the different structure of signals and differences in satellite constellations. The ASG-EUPOS multifunctional system for precise satellite positioning is a part of the EUPOS project involving countries of Central and Eastern Europe. The number of its users is increasing rapidly. Currently 31 of 101 reference stations are equipped with GPS/GLONASS receivers and the number is still increasing. The aim of this paper is to study the height solution differences caused by using different PCV calibration models in integrated GPS/GLONASS observation processing. Studies were conducted based on the datasets from the ASG-EUPOS network. Since the study was intended to evaluate the impact on height determination from the users’ point of view, a so-called “commercial” software was chosen for post-processing. The analysis was done in a baseline mode: 3 days of GNSS data collected with three different receivers and antennas were used. For the purposes of research the daily observations were divided into different sessions with a session length of one hour. The results show that switching between relative and absolute PCV models may cause an obvious effect on height determination. This issue is particularly important when mixed GPS/GLONASS observations are post-processed.
Słowa kluczowe
Rocznik
Strony
211--223
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Institute of Geodety
Bibliografia
  • Baire O., Pottiaux E., Bruyninx C., Defraigne P., Legrand J., Bergoet N. (2011). Comparison of Receiver Antenna Calibration Models used in the EPN, http://www.euref.eu/symposia/2011Chisinau/Symposium2011-Chisinau.html.
  • Bosy J., Oruba A., Graszka W., Leończyk M., Ryczywolski M. (2008). ASG-EUPOS densification of EUREF Permanent Network on the territory of Poland, Reports on Geodesy, No. 2 (85), 105-112.
  • Braun J., Rocken C., Meertens C.M., Johanson J. (1993). GPS antenna mixing and phase center corrections, Eos Trans. AGU, Fall Meeting Supplement, 197.
  • Bruyninx C. (2007). Comparing GPS-only with GPS+GLONASS positioning in a regional permanent GNSS network, GPS Solutions, Vol. 11(2), 97-106.
  • Cai C., Gao Y. (2007). Precise Point Positioning using combined GPS and GLONASS observations, Journal of Global Positioning Systems, Vol. 6(1), 13-22.
  • Dach R., Schmid R., Schmitz M., Thaller D., Schaer S., Lutz S., Steigenberger P., Wubbena G., Beutler G. (2010). Improved antenna phase center models for GLONASS, GPS Solutions, Vol. 15, 49-65.
  • Dawidowicz K., Świątek K. (2008). Some aspects of GPS observation elaboration for heights appointment requirements, The 7th International Conference Enviromental Engineering, Selected papers, Vol. III, 1300-1304.
  • Dawidowicz K. (2012). Antenna calibration models in height determinations in ASGEUPOS’ POZGEO-D service - a case study, Artificial Satellites, Vol. 47(4), 155-167.
  • Dawidowicz K., Krzan G. (2014). Coordinate estimation accuracy of static Precise Point Positioning using on-line PPP service, a case study, Acta Geodaetica et Geophysica, Vol. 49, 37-55.
  • Dodson A., Moore T., Baker D.F., Swann J.W. (1999). Hybrid GPS + GLONASS, GPS Solutions, Vol. 3 (1), 32-41.
  • Falko M., Seeber G., Völksen Ch., Wübbena G., Schmitz M. (1998). Results of Absolute Field Calibration of GPS Antenna PCV, ION GPS-98; Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, TN; United States; 15-18 Sept., 31-38.
  • Figurski M., Kamiński P., Kroszczyński K., Szafranek K. (2009). ASG-EUPOS monitoring with reference to EPN, Artificial Satellites, Vol. 44, 85-94.
  • Geiger A. (1998). Modeling of Phase Center Variation and its Influence on GPS Positioning, GPS-Techniques Applied to Geodesy and Surveying: Proceedings of the International GPS-Workshop Darmstadt, April 10 to 13, Editor: Erwin Groten, Robert Strauß, Lecture Notes in Earth Sciences, Vol. 19, 210-222.
  • Görres B., Campbell M., Becker M., Siemes M. (2006). Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques, GPS solutions, Vol. 10, 136-145.
  • Habrich H., Beutler G., Gurtner W., Rothacher M. (1999). Double difference ambiguity resolution for GLONASS/GPS carrier phase, 12th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION'99, Nashville, Tennessee, 14-17 Sept., 1609-1618.
  • Han S., Dai L., Rizos C. (1999). A new data processing strategy for combined GPS/GLONASS carrier phase-based positioning, Proc. ION GPS-99, 1999 - gmat.unsw.edu.au.
  • Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008). GNSS - Global Navigation Satellite Systems, Springer-Verlag Wien, Austria, 516 pages.
  • Kadaj R. (2010). Application of Schreiber’s type difference observation system for elaboration of a session of static GPS measurements, Biuletyn Wojskowej Akademii Technicznej, Vol. LIX, No 2 (658), 85-106.
  • Mader G.L. (1999). GPS Antenna Calibration at the National Geodetic Survey, GPS Solutions, Vol. 3(1): 50-58.
  • Rothacher M. (2001). Comparison of Absolute and Relative Antenna Phase Center Variations, GPS Solutions, Vol. 4: 55-60.
  • Rocken C. (1992). GPS antenna mixing problems. UNAVACO Memo, November 12.
  • Schaer, S. (1999). Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. dissertation., Astronomical Institute University of Bern, Bern. 205 pages.
  • Schmid R., Rothacher M., Thaller D., Steigenberger P. (2005). Absolute phase center corrections of satellite and receiver antennas, GPS Solutions, Vol. 9(4), 283-293.
  • Schmid R., Steingerberg P., Rotchacher M. (2005). Benefits from absolute GPS antenna phase center modeling, Advances in GPS Data Processing and Modelling, London 9-10 November, www.espace-tum.de/mediadb/15354/ 15355/Vortrag_London.pdf.
  • Schmitz M., Wübbena G., Boettcher G. (2002). Tests of phase center variations of various GPS antennas, and some results, GPS Solutions, Vol 6: 18-27.
  • Schupler B.R., Clark T.A. (1991). How Different Antennas Affect the GPS Observable, GPS World, No. 2(10): 32-36.
  • Schupler B.R., Clark T.A. (2001). Characterizing the Behavior of Geodetic GPS Antennas, GPS World, No. 12(2): 48-55.
  • Slater J., Willis P., Gurtner W., Beutler G., Noll C., Hein G.W., Neilan R.E. (1998). The International GLONASS Experiment (IGEX-98), 11th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION'98, Nashville, Tennessee, 15-18 Sept., 1637-1643.
  • Völksen Ch. (2006). Report on the Symposium of the IAG Sub-commission for Europe (EUREF), mitteilungen des BKG, Band 38, Verlag des BKG, Frankfurt/Main, 73-78.
  • Wang J. (1999). Precise GPS and GLONASS satellite positioning: model formulations and performance, Artificial Satellites, Vol. 34(1), 11-25.
  • Wang J., Rizos Ch., Stewart M.P., Leick A. (2000). GPS and GLONASS Integration: Modelling and Ambiguity Resolution Issues, GPS Solutions, Vol. 5, 55-64.
  • Weber R., Slater J.A., Franger E., Glotov V., Habrich H., Romero I., Schaer S. (2005). Precise GLONASS Orbit Determination within the IGS/IGLOS Pilot Project, Advances in Space Research, Vol. 36, 369-375.
  • Willis P., Beutler G., Gurtner W., Hein G.W., Neilan R.E., Noll C., Slater J. (1999). IGEX: International GLONASS experiment: scientific objectives and preparation, Advanced in Space Research, Vol 23(4), 659-663.
  • Wu J.T., Wu S.C., Hajj G.A., Bertiger W.I., Lichten S.M. (1993). Effects of antenna orientation on GPS carrier phase, Manuscripta Geodetica, No 18, 91-98.
  • Wubbena G., Schmitz M., Boettcher G., Schumann Ch. (2006). Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern, Proceedings of the IGS Workshop: Perspectives and Visions for 2010 and beyond, 8-12 May, Darmstadt, Germany.
  • Zeimetz P., Kuhlman H. (2008). On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber, FIG Working Week 2008, Stockholm, Sweden 14-19 June.
  • Zarraoa N., Mai W., Sardón E., Jungstand A. (1998). Preliminary evaluation of the Russian GLONASS system as a potential geodetic tool, Journal of Geodesy, Vol. 72, 356-363.
  • Zhang Y., Liu J. (2002). Combined GPS/GLONASS Data Processing, Information Science, Vol. 5(4), 32-36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5216e21a-851c-465d-887c-798ba14406c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.