PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Amplitude Variations of Seasonal and Sub-Seasonal Oscillations in Length of Day and Total Solar Irradiance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to identify and compute oscillations in two different time series with similar amplitude variations using length of day data with tide model removed (LODR) and total solar irradiance (TSI) data. The combination of the Fourier transform band pass filter and Hilbert transform allows detecting amplitude variations as a function of the oscillation period. The amplitude variations in two different time series enable computation of frequency dependent or time-frequency correlation coefficients between them. It allows also identifying such oscillations in two time series which have similar amplitude variations. The method applied to LODR and TSI data, enable to detect a possible relationship between them. This comparison method can be applied to any time series which consist of oscillations with non-constant amplitudes.
Rocznik
Strony
52--57
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Faculty of Production Engineering, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • 1. Arnold, N.F., Robinson, T.R., 1997. Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation. Annales Geophysicae, 16(1), 69–76.
  • 2. Biktash, L.Z., 2019. Influence of Total Solar Irradiance on the Earth’s Climate. Geomagnetism and Aeronomy, 59(3), 368–373.
  • 3. Chapanov, Y., Ron, C., Vondràk, J., 2019. Solar origin of common interannual cycles of Earth rotation, MSL and climate. Fifteenth International Scientific Conference Space, Ecology, Safety 6–8 November 2019, Sofia, Bulgaria.
  • 4. Chapanov, Y., Ron, C., Vondrak, J., 2017. Decadal cycles of Earth rotation, mean sea level and climate, excited by solar activity. Acta Geodyn. Geomater, 14, 241–250.
  • 5. Chao, B.F., 1989. Length-of-day variations caused by El Nino-Southern Oscillation and quasi-biennial oscillation. Science, 243(4893), 923–925.
  • 6. Dickey, J.O., Marcus, S.L., Hide, R., Eubanks, T.M., Boggs, D.H., 1994. Angular momentum exchange among the solid Earth, atmosphere, and oceans: A case study of the 1982–1983 El Niño event. Journal of Geophysical Research: Solid Earth, 99(B12), 23921–23937.
  • 7. Dickey, J.O., Marcus, S.L., Hide, R., 1992. Global propagation of interannual fluctuations in atmospheric angular momentum. Nature, 357(6378), 484–488.
  • 8. Djurovic, D., Pâquet, P., 1988. The solar origin of the 50-day fluctuation of the Earth rotation and atmospheric circulation. Astronomy and Astrophysics, 204, 306–312.
  • 9. Djurović, D., Pâquet, P., 1996. The common oscillations of solar activity, the geomagnetic field, and the Earth’s rotation. Solar Physics 167(1–2), 427–439.
  • 10. Eubanks T.M., Steppe J.A., Dickey J.O., 1986. The El-Nino, the Southern Oscillation and the Earth Rotation. In: Cazenave A. (Ed.) Earth Rotation: Solved and Unsolved Problems. NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 187, Springer, Dordrecht, 163–186.
  • 11. Gambis, D. 2004. Monitoring Monitoring Earth orientation using space-geodetic techniques: stateof-the-art and prospective. Journal of Geodesy, 78(4–5), 295–303.
  • 12. Gambis, D., 1992. Wavelet Transform Analysis of the Length of the Day and the El Nino/Southern Oscillation Variations at Intraseasonal and Interannual Time Scales, Ann. Geophys, 10, 429–437.
  • 13. Gasquet, C., Witomski P., 1999. Fourier Analysis and Applications – Filtering, Numerical Computation, Wavelets, Springer Verlag Inc., New York.
  • 14. Gross, R.S., 2007. Earth rotation variations – long period, in Physical Geodesy, edited by T.A. Herring, Treatise on Geophysics, Vol. 11, Elsevier, Amsterdam.
  • 15. Haddad, M., Bonaduce, A., 2017. Interannual variations in length of day with respect to El Niño – Southern Oscillation’s impact (1962–2015). Arab J Geosci, 10, 255.
  • 16. Hoyt, D.V, Schatten, K.H., 1993. A discussion of plausible solar irradiance variations, 1700– 1992, J. Geophys. Res., 98(A11), 18,895–18,906.
  • 17. Hoyt, D.V., Schatten, K.H., 1997. The Role of the Sun in Climate Change. Oxford University Press, New York.
  • 18. Jault, D., Le Mouël, J.L. 1991. Exchange of angular momentum between the core and the mantle. Journal of geomagnetism and geoelectricity, 43(2), 111–129.
  • 19. Kalarus, M., Schuh, H., Kosek, W., Akyilmaz, O., Bizouard, C., Gambis, D., Gross, R., Jovanović, B., Kumakshev, S., Kutterer, H., Mendes Cerveira, P. J., Pasynok, S., Zotov L., 2010. Achievements of the Earth orientation parameters prediction comparison campaign. Journal of Geodesy, 84(10), 587–596.
  • 20. Kopp, G., 2016. Magnitudes and timescales of total solar irradiance variability. Journal of space weather and space climate, 6, A30.
  • 21. Kosek, W., 1993. The common short periodic oscillations in the Earth’s rate of rotation, atmospheric angular momentum and solar activity. Bulletin géodésique, 67(1), 1.
  • 22. Kosek, W., 1995. Time variable band pass filter spectra of real and complex-valued polar motion series Time Artificial Satellites – Planetary Geodesy (no.24), 30(1), 27–43.
  • 23. Kosek, W., Niedzielski T., Popiński W., Zbylut-Górska M., Wnęk A. 2016. Variable seasonal and subseasonal oscillations in sea level anomaly data and their impact on prediction accuracy. In: International Association of Geodesy Symposia, Vol. 142, Springer, 1–6.
  • 24. Langley, R.B., King, R.W., Shapiro, I.I., Rosen, R.D., Salstein, D.A., 1981. Atmospheric angular momentum and the length of day: A common fluctuation with a period near 50 days. Nature, 294(5843), 730–732.
  • 25. Lau, K-M., Weng, H., 1995. Climate signal detection using wavelet transform: how to make a time series sing. Bull. Am. Meteor. Soc. 76, 2391–2402.
  • 26. Le Mouël, J.-L., Blanter, E., Shnirman, M., and Courtillot, V., 2010. Solar forcing of the semiannual variation of length-of-day, Geophys. Res. Lett., 37, L15307.
  • 27. Lean J., Rind, D., 1999. Evaluating sun-climate relationships since the little ice age. J. Atm. Terr. Phys., 61, 25–35.
  • 28. Lei, Y., Zhao, D., Cai, H., 2015. Prediction of lengthof-day using extreme learning machine. Geodesy and geodynamics, 6(2), 151–159.
  • 29. Liu, L.T., Hsu, H.T., Grafarend, E.W., 2005. Wavelet coherence analysis of length-of-day variations and El Nino-southern oscillation. Journal of Geodynamics, 39(3), 267–275.
  • 30. Madden, R.A., Julian, P.R., 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the atmospheric sciences, 29(6), 1109–1123.
  • 31. Moffa-Sánchez, P., Born, A., Hall, I.R., Thornalley, D.J., & Barker, S. 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nature geoscience, 7(4), 275–278.
  • 32. Parker E.N. 2000. The physics of the sun and the gateway to the stars. Physics Today, 53, 26–31.
  • 33. Popiński, W. 2008. Insight into the fourier transform band pass filtering technique. Artificial Satellites, 43(4), 129–141.
  • 34. Ray R.D., Erofeeva, S.Y., 2014. Long-period tidal variations in the length of day. Journal of Geophysical Research: Solid Earth., 119 (2), 1498–1509.
  • 35. Reid G.C. 1995. The sun-climate question: Is there a real connection? Rev. Geophys., 33, 535–538.
  • 36. Sadourny C.R. 1994. L’influence du Soleil sur le climat. C.R. Acad. Sci. Paris, 319, 1325–1342.
  • 37. Scafetta, N., Willson, R.C., 2014. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophysics and Space Science, 350(2), 421–442.
  • 38. Shindell, D.T., Rind, D., Balachandran, N., Lean, J., Lonergan, P., 1999. Solar cycle variability, ozone, and climate. Science, 284, 305–308.
  • 39. Soon, W.W-H., Connolly, R., Connolly, M., 2015. Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Science Reviews, 150, 409–452.
  • 40. Soon W.W-H., 2005. Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years, Geophysical Research Letters, Vol. 32, L16712.
  • 41. Soon, W.W-H., Legates D., 2013. Solar irradiance modulation of Equator-to-Pole (Arctic) temperature gradients: Empirical evidence for climate variation on multi-decadal timescales. Journal of Atmospheric and Solar-Terrestrial Physics, 93, 45–56.
  • 42. White, W.B., Lean, J., Cayan, D.R., Dettinger, M.D., 1997. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102, 3255–3266.
  • 43. Yoder, C., Williams, J., Parke, J., 1981. Tidal variations of earth rotation. JGR, Vol, 86, Iss. B2, 881–891.
  • 44. Zheng, D., Ding, X., Zhou, Y., Chen, Y., 2003. Earth rotation and ENSO events: combined excitation of interannual LOD variations by multiscale atmospheric oscillations. Global and Planetary Change, 36(1–2), 89–97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52099606-d927-4fd0-99c5-1b5ef8f60f81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.