PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two tools for the science of material effort : – a review paper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the science of material effort from the historical viewpoint. Two general scientific tools: the geometrical descriptive method of Mohr, and the energetic method of Huber are compared and evaluated from the very beginning. Three appropriate stress invariants are taken into account: stress intensity, stress triaxiality and stress shearness. Especially, much attention is devoted to explanation of the stress shearness invariant, which aims at describing the Lode parameter in a more analytical manner. Two different tools of finding a proper yield surface which contains the above mentioned three stress invariants are discussed in the literature perspective. In particular, the three-parameter yield surface, called the Burzyński-Pęcherski hypothesis is researched and explained from this new point of view.
Rocznik
Strony
799--826
Opis fizyczny
Bibliogr. 110 poz., rys.
Twórcy
  • University of Warmia and Mazury, Faculty of Technical Sciences, Olsztyn, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Fluid-Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
  • Institute of Fluid-Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • 1. Altenbach H., 2010, Strength hypotheses – a never ending story, Czasopismo Techniczne, Politechnika Krakowska, 107, 20, 5-15.
  • 2. Altenbach H., Bolchoun A., Kolupaev V.A., 2014, Phenomenological field and failure criteria, [In:] Plasticity of Pressure-Sensitive Materials, Holm Altenbach, Andreas Ochsner (Eds.), 49-152, Springer-Verlag Berlin Heidelberg 3.
  • 3. Bai Y., Wierzbicki T., 2008, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity, 24, 1071-1096.
  • 4. Bai Y., Wierzbicki T., 2010, Application of extended Mohr-Coulomb criterion to ductile fracture, International Journal of Fracture, 161, 1-20.
  • 5. Baltov, A., Sawczuk, A., 1965, A rule of anisotropic hardening, Acta Mechanica, 1, 81-92.
  • 6. Banaś, K., Badur J., 2017, Influence of strength differential effect on material effort of a turbine guide vane based on thermo-elasto-plastic analysis, Journal of Thermal Stresses, 40, 11, 1368-1385.
  • 7. Barlat F., Brem J.C., Yoon J.W., Chung K., Dick R.E., Lege D.J., Pourboghrat F., Choi S.H., Chu E., 2003, Plane stress field function for aluminum alloy sheets – part 1: theory, International Journal of Plasticity, 19, 1297-1319.
  • 8. Becchi A., 1994, I Criteri di Plasticita: Cento Anni di Dibattito (1864–1964), Doctor Thesis, Firenze.
  • 9. Beltrami E., 1885, Sulla conditioni di resistenza dei corpi elastici, Rend. Ist. Lomb., II, 18, 1885, [In]: Beltrami E. (1902-1920) Opere matematiche (4 vols), Hoepli, Milan, 180-189.
  • 10. Burzyński W., 1928, Studjum nad Hipotezami Wytężenia (Study on Material Effort Hypotheses), Nakładem Akademii Nauk Technicznych (issued by the Academy of Technical Sciences), Lwów, January 7, 1928, 1-192 (in Polish); reprinted in: Włodzimierz Burzyński Dzieła Wybrane, tom I, Polska Akademia Nauk, PWN Warszawa, 1982, 67-258 (in Polish).
  • 11. Burzyński W., 1929a, Teoretyczne podstawy hipotez wytężenia, Czasopismo Techniczne, 1929, 47, 1-41, Lwów (in Polish); reprinted in: Włodzimierz Burzyński Dzieła Wybrane, tom I, Polska Akademia Nauk, PWN Warszawa, 1982, 264-303 (in Polish), English translation: Theoretical Foundations of the Hypotheses of Material Effort, Engineering Transactions, 56, 3, 269-305, 2008.
  • 12. Burzyński W., 1929b, Ueber die Anstrengungshypothesen, Schweizerische Bauzeitung, 94, 21, 23, November 1929, 259-262; reprinted in Włodzimierz Burzyński Dzieła Wybrane, tom I, Polska Akademia Nauk, PWN Warszawa, 1982, 259-262.
  • 13. Bruhns O.T., 2014, Some remarks on the history of plasticity – Heinrich Hencky, a pioneer of the early years, [In:] The History of Theoretical, Material and Computational Mechanics – Mathematics Meets Mechanics and Engineering, Ed. Erwin Stein, Springer-Verlag Berlin Heidelberg, 133-152.
  • 14. Casey J., Sullivan T.D., 1985, Pressure dependency, strength-differential effects and plastic volume expansion in metals, International Journal of Plasticity, 1, 1, 39-61.
  • 15. Cazacu O., Barlat F., 2004, A criterion for description of anisotropy and field differential effects in pressure-insensitive metals, International Journal of Plasticity, 20, 2027-2045.
  • 16. Drucker D.C., 1949, Relations of experiments to mathematical theories of plasticity, Journal of Applied Mechanics, 16, 349-357.
  • 17. Drucker D.C., 1973, Plasticity theory, strength-differential (SD) phenomenon, and volume expansion in metals and plastics, Metallurgical and Materials Transactions, 4, 667-673.
  • 18. Drucker D.C., Prager W., 1948, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, 157-165.
  • 19. Dubey P., Kopeć M., Łazińska M., Kowalewski Z.L., 2023, Field surface identification of CP-Ti and its evolution reflecting pre-deformation under complex loading, International Journal of Plasticity, 167, August, 103677.
  • 20. Dudda W., 2020, Mechanical characteristics of 26H2MF and St12T steels under compression and elevated temperatures, Strength of Materials, 52, 2, 325-328.
  • 21. Dudda W., 2021, Issues Concerning the Thermal Effort Concept in Heat Resistive Steels, Press UWM, Olsztyn, 1-300.
  • 22. Egner W., Sulich P., Mroziński, S., Egner H., 2020, Modelling thermo-mechanical cyclic behavior of P91 steel, International Journal of Plasticity, 135, 102820.
  • 23. Foppl, A., 1907, Vorlesunfen uber technische Mechanik, V. Bd. Leipzig.
  • 24. Frąś T., Kowalewski Z., Pęcherski R.B., Rusinek A., 2010, Applications of Burzyński failure criteria – I. Isotropic materials with asymmetry of elastic range, Engineering Transactions, 58, 1-10.
  • 25. Frąś T., Nishda M., Rusinek A., Pęcherski R.B., Fukuda N., 2014, Description of the field state of bioplastics on examples of starch-based plastics and PLA/PBAT blends, Engineering Transactions, 62, 329-354.
  • 26. Frąś T., Pęcherski R.B., 2010, Applications of the Burzyński hypothesis of material effort for isotropic solids, Mechanics and Control, 29, 2, 45-50.
  • 27. Gao X. Zhang T., Hayden M., Roe C., 2009, Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy, International Journal of Plasticity, 25, 2366-2382.
  • 28. Gao X., Zhang T., Zhou J., Graham S., Hayden M., Roe C., 2011, On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, International Journal of Plasticity, 27, 217-231.
  • 29. Geiringer H., Prager W., 1934, Mechanik isotroper Korper im plastischen Zustand, Ergebnisse der exakten Naturwissenschaften, 13, 314-363.
  • 30. Gudehus, G., 1973, Elastoplastische Stoffgleichungen fur Trockenen Sand, Ingenieur Archiv, 42, 3, 151-169.
  • 31. Hebda M., Pechęrski R.B., 2005, Energy-based criterion of elastic limit state in fibre-reinforced composites, Archives of Metallurgy and Materials, 50, 1073-1088.
  • 32. Helmhotz H., 1902, Dynamic continuerlich verbreiteten Massen, Leipzig.
  • 33. Hencky H., 1924, Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen, ZAMM, 4, 323-334.
  • 34. Hill R., 1948, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society, London, A193, 281-297.
  • 35. Hosford W.F., Allen T.J., 1973, Twinning and directional slip as a cause for a strength differential effect, Metallurgial Trensactions, 4, 1424-1425.
  • 36. Hu Q., Li X., Han X., Li H., Chen J., 2017, A normalized stress invariant-based field criterion: modeling and validation, International Journal of Plasticity, 99, 248-273.
  • 37. Hu Q., Yoon J.W., 2021, Analytical description of an asymmetric yield function (Yoon, 2014) by considering anisotropic hardening under non-associated flow rule, International Journal of Plasticity, 140, 102978.
  • 38. Huber M.T., 1904, Właściwa praca odkształcenia jako miara wytężenia materiału, Czasopismo Techniczne, Lwów, (in Polish), English translation: Specific work of strain as a measure of material effort, Archives of Mechanics, 56, 173-190, 2004.
  • 39. Huber M.T., 1948, Kryteria wytrzymałościowe w stereomechanice technicznej, Warszawa, PIW.
  • 40. Kłębowski Z., 1958, Przyrost właściwej energii swobodnej jako miara wytężenia, Zeszyty Naukowe Politechniki Warszawskiej – Mechanika, 37, 79-85 41.
  • 41. Kolupaev V.A., Yu M.H., Altenbach H., 2016, Fitting of the strength hypotheses, Acta Mechanica, 227, 1533-1556.
  • 42. Kordzikowski P., Janus-Michalska M., Pęcherski R.B., 2005, Specification of energy-based criterion of elastic limit states for cellular materials, Archives of Metallurgy and Materials, 50, 621-634.
  • 43. Kordzikowski P., Pęcherski R.B., 2010, Assessment of the material strength of anisotropic materials with asymmetry of the elastic range, Mechanics and Control, 29, 2, 57-62 44.
  • 44. Kowalczyk K., Ostrowska-Maciejewska J., Pęcherski R.B., 2003, An energy-based yield criterion for solids of cubic elasticity and orthotropic limit state, Archives of Mechanics, 55, 5-6, 431-448.
  • 45. Kowalczyk-Gajewska K., Ostrowska-Maciejewska J., 2005, Energy-based limit criteria for anisotropic elastic materials with constraints, Archives of Mechanics, 57, 133-155.
  • 46. Kowalczyk-Gajewska K., Pieczyska E.A., Golasiński K., Maj M., Kuramoto S., Furuta T., 2019, A finite strain elastic-viscoplastic model of Gum Metal, International Journal of Plasticity, 119, 85-101.
  • 47. Kowalewski Z.L., 1998, Assessment of cyclic properties of 18G2A low-alloy steel at biaxial stress state, Acta Mechanica, 120, 71-89.
  • 48. Krzyś W., Życzkowski M., 1962, Sprężystości i Plastyczność. Wybór zadań i przykładów, PWN, Warszawa.
  • 49. Kuroda M., Kuwabara T., 2002, Shear band development in polycrystalline metal with strength-differential effect and plastic volume expansion, Proceedings of The Royal Society A, London, 458, 2243-2262.
  • 50. Lade P.V., Duncan J.M., 1973, Cubical triaxial tests on cohesionless soil, Journal of the Soil Mechanics and Foundations Division, ASCE, 99, SM10, 793-812.
  • 51. Lehmann Th., 1964, Anisotrope plastische For anderungen, Rheologica Acta, 3, 281-285.
  • 52. Lode W., 1926, Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle: Eisen, Kupfer und Nickel, Zeitschrift fur Physik, 36, 913-943.
  • 53. Lou Y.S., Yoon J.W., 2017, Anisotropic ductile fracture criterion based on linear transformation, International Journal of Plasticity, 93, 3-25.
  • 54. Lou Y.S., Yoon J.W., Huh H., 2014, Modeling of shear ductile fracture considering a changeable cut-off value for the stress triaxiality, International Journal of Plasticity, 54, 56-80.
  • 55. Lou Y., Zhang S., Yoon J.W., 2020, Strength modeling of sheet metals from shear to plane strain tension, International Journal of Plasticity, 134, 102813.
  • 56. Łagoda T., Ogonowski P., 2005, Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Materialwiss Werkstofftech, 36, 429-437.
  • 57. Maxwell J.C., 1856, A private letter to prospect Lord Kelvin, Proceedings of the Cambridge Philosophical Society, 32, 1936 (cf. also: Origins of Clerk Maxwell’s electric ideas as described in familiar letters to William Thompson, ed. by Sir J. Larmor, Cambridge at University Press, 1937.)
  • 58. Mierzejewski H., 1927, Foundations of Mechanics of Plastic Solids (in Polish), Warszawa.
  • 59. Mirone G., Corallo D., 2010, A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile damage and hardening, International Journal of Plasticity, 26, 348-371.
  • 60. Mises R., 1913, Mechanik der festen Korper im plastisch-deformablen Zustand, Gottingen Nachrichten, Mathematisch-Physikalische Klasse, 4, 1, 582-592.
  • 61. Mises R., 1928, Mechanik der plastischen Form¨anderung von Kristallen, ZAMM, 8, 161-185.
  • 62. Moayyedian F., Kadkhodayan M., 2017, A modified Burzyński criterion for anisotropic pressure-dependent materials, Sadhana – Academy Proceedings in Engineering Sciences, 42, 1, 95-109.
  • 63. Moayyedian F., Kadkhodayan M., 2021, Modified Burzyński criterion along with AFR and non-AFR for asymmetric anisotropic materials, Archives of Civil and Mechanical Engineering, 21, 64, 1-19.
  • 64. Möhr O., 1882, Uber die Darstellung des Spannungszustandes und des Deform ationsztanden eines Korperlementen, Zivilingenieur (rep. O. Möhr, Technische Mechanik, Berlin, 1906) .
  • 65. Möhr O., 1900, Welche Umst ande bedingen die Elastizit atsgrenze u. den Bruch eines Materials, Zeitschrift des Vereines Deutscher Ingenieure.
  • 66. Möhr O., 1906, Abhandlungen aus dem Gebiete der Technischen Mechanik, Verlag von Wilhelm Ernst & Sohn, Berlin, 1-447.
  • 67. Mróz Z., 1967, On the description of anisotropic workhardening, Journal of the Mechanics and Physics of Solids, 15, 163-175.
  • 68. Mróz Z., Seweryn A., 1998, Non-local failure and damage evolution rule: Application to a dilatant crack model, Journal de Physique IV, France, 8, 257-268.
  • 69. Mucha M., Wcisło B., Pamin J., Kowalczyk-Gajewska K., 2018, Instabilities in membrane tension: Parametric study for large strain thermoplasticity, Archives of Civil and Mechanical Engineering, 18, 1055-1067.
  • 70. Năadai A., 1927, Der bildsame Zustand der Werkstoffe, Berlin.
  • 71. Nalepka K., Pęcherski R.B., 2002, Fizyczne podstawy energetycznego kryterium wytężenia monokryształów, XXX Szkoła Inżynierii Materiałowej, red. J. Pacyno, Kraków-Ustroń-Jaszowiec, 1-4 X 2002, AGH, Kraków 2002, 311-316.
  • 72. Nalepka K., Pęcherski R.B., 2003, Energetyczne kryteria wytężenia. Propozycja obliczania granicznych energii z pierwszych zasad, Rudy i Metale Nieżelazne, 48, 533-536
  • 73. Nixon M.E., Cazacu O., Lebensohn R.A., 2010, Anisotropic response of high-purity-titanium: experimental characterization and constitutive modelling, International Journal of Plasticity, 26, 516-532.
  • 74. Nowak M., Ostrowska-Maciejewska J, Pęcherski R.B., Szeptyński P., 2011, Field criterion accounting for the third invariant of stress tensor deviator. Part I. Proposition of the Field criterion based on the concept of influence functions, Engineering Transactions, 59, 4, 273-281.
  • 75. Nowak Z., Nowak M., Pęcherski R.B., 2014, A plane stress elastic-plastic analysis of sheet metal cup deep drawing processes, SSTA 2013, [In:] 10th Jubilee Conference on Shell Structures – Theory and Applications, W. Pietraszkiewicz and J. Górski (Eds.), 3, 129-132.
  • 76. Novozhilov V.V., 1952, On a physical meaning of the stress invariants, Applied Mathematics and Mechanics (PMM), 5, 16-30.
  • 77. Oliferuk W., Maj M., Raniecki B., 2004, Experimental analysis of energy storage rate components during tensile deformation of polycrystals, Materials Science and Engineering: A, 374, 1-2, 77-81.
  • 78. Orłowski K.A., Ochrymiuk T., Atkins A., Chuchała D., 2013, Application of fracture mechanics for energetic effects predictions while wood sawing, Wood Science and Technology, 47, 949-963.
  • 79. Orłowski K.A., Ochrymiuk T., Hlaskova L., Chuchała D., Kopecky Z., 2022, Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central Europe case, Wood Science and Technology, 54, 457-477.
  • 80. Ostrowska-Maciejewska J., Pęcherski R.B., Szeptyński P., 2012, Limit condition for anisotropic materials with asymmetric elastic range, Engineering Transactions, 60, 125-138.
  • 81. Ostrowska-Maciejewska J., Szeptyński P., Pęcherski R.B., 2013, Mathematical foundations of limit criterion for anisotropic materials, Archives of Metallurgy and Materials, 58, 4, 1223-1235.
  • 82. Pełczyński T., 1959, O hipotezie wytężeniowej O. Möhra, Przegląd Spawalnictwa, 3, 11, 74-78.
  • 83. Pęcherski R.B., 1998, Macroscopic effects of micro-shear banding in plasticity of metals, Acta Mechanica, 131, 203-224.
  • 84. Pęcherski R.B., 2008, Burzyński field condition vis-a-vis the related studies reported in the literature, Engineering Transactions, 56, 4, 383-391.
  • 85. Pęcherski R.B., Nalepka K., Frąś T., Nowak M., 2014, Inelastic flow and failure of metallic solids. Material effort: study across scales, [In:] Constitutive Relations under Impact Loadings, T. Łodygowski, A. Rusinek (Eds.), CISM International Centre for Mechanical Sciences 552, Springer, Vienna.
  • 86. Pęcherski R.B., Rusinek A., Frąś T., Nowak M., Nowak Z., 2021, Energy-based yield condition for orthotropic materials exhibiting asymmetry of elastic range, Archives of Metallurgy and Materials, 65, 2, 771-778.
  • 87. Pęcherski R.B., Szeptyński P., Nowak M., 2011, An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor, Archives of Metallurgy and Materials, 56, 503-508.
  • 88. Pietruszczak S., Inglis D., Pande G.N., 1999, A fabric-dependent fracture criterion for bone, Journal of Biomechanics, 32, 1071-1079.
  • 89. Pietruszczak S., Mróz Z., 2001, On failure criteria for anisotropic cohesive-frictional materials, International Journal for Numerical and Analytical Methods in Geomechanics, 25, 509-524.
  • 90. Podgórski J., 1984, Limit state condition and the dissipation function for isotropic materials, Archives of Mechanics, 36, 323-342.
  • 91. Podgórski J., 1985, General failure criterion for isotropic media, Journal of Engineering Mechanics, Ill, 2, 188-201.
  • 92. Prager W., Hodge P.G., 1954, Theorie ideal plastischer Korper, Wien, Springer-Verlag
  • 93. Reuss A., 1929, Berechnung der Flissgrenze von Mischkristallen auf Grund der Plastizit atsbedingung fur Einkristalle, ZAMM, 9, 49-58.
  • 94. Reuss A., 1930, Berucksichtigung der elastischen Form anderung in der Plastizit atstheorie, ZAMM, 10, 266-274.
  • 95. Rychlewski J., 2011, Elastic energy decomposition and limit criteria, Engineering Transactions, 59, 1, 31-63.
  • 96. Schleicher F., 1926, Der Spannungszustand an der Fließgrenze (Plastizit¨atsbedingung), ZAMM, 6, 199-216.
  • 97. Schleicher F., 1928, Uber die Sicherheit gegen Uberschreiten der Fliessgrenze bei statischer Beanspruchung, Der Bauingenieur, 9, 15, 253-261.
  • 98. Skrzypek J., Ganczarski A.W., 2015, Mechanics of Anisotropic Materials, Springer International Publishing Switzerland, Cham.
  • 99. Skrzypek J., Ganczarski A., 2016, Constraints on the applicability range of pressure-sensitive field/failure criteria: strong orthotropy or transverse isotropy, Acta Mechanica, 227, 2275-2304.
  • 100. Szeptyński P., 2017, Energy-based yield criteria for orthotropic materials, exhibiting strengthdifferential effect. Specification for sheets under plane stress state, Archives of Metallurgy and Materials, 62, 729-736.
  • 101. Timoshenko S., 1953, History of Strength of Materials, Mc Graw-Hill.
  • 102. Torre C., 1947, Ein flussdermittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze, Osterreichisches Ingenieur-Archiv , I, 4/5, 316-342.
  • 103. Vadillo G., Fernandez-Saez J., Pęcherski R.B., 2011, Some applications of Burzyński field condition in metal plasticity, Materials and Design, 32, 2, 628-635.
  • 104. Wierzbicki T., Bao Y., Lee Y.-W., Bai Y., 2005, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, 47, 719-743.
  • 105. Willam K.J., Warnke E.P., 1974, Constitutive model for the triaxial behaviour of concrete, Proceedings of the May 17-19, 1974, International Association of Bridge and Structural Engineers Seminar on Concrete Structures Subjected to Triaxial Stresses, Bergamo, Italy.
  • 106. Yoon J.W., Lou Y.S., Yoon J.H., Glazoff M.V., 2014, Asymmetric field function based on the stress invariants for pressure sensitive metals, International Journal of Plasticity, 56, 184-202.
  • 107. Yu M.-H., 2004, Unified Strength Theory and its Applications, Springer-Verlag, Berlin, Heidelberg.
  • 108. Zawadzki J., 1954, Ciśnienie zredukowane jako jeden z parametrów wytężenia. Przyrost właściwej energii swobodnej jako miara wytężenia, Rozprawy Inżynierskie, LXXIII, 357-398.
  • 109. Życzkowski M., 1981, Combined Loadings in the Theory of Plasticity, PWN-Polish Scientific Publishers, Warszawa.
  • 110. Życzkowski M., 1999, Discontinuous bifurcations in the case of the Burzyński-Torre field condition, Acta Mechanica, 132, 19-35.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
The paper was presented at the XIIIth conference PLASTMET’2023, Łańcut Zamek, 7-10 October, 2023, in a session in honour of Prof. Ryszard B. Pęcherski organized by prof. Romana Śliwa and prof. Katarzyna Kowalczyk-Gajewska.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52071ef7-cc54-416f-91ab-eb2762cc30c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.