PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synchronous reluctance motor drives are one of the most attractive alternatives of permanent magnet synchronous motor drives and induction motor drives in the field of conventional industrial and household applications. This tendency is expected to be continued in the case of motion control applications as well. This article investigates two torque-control algorithms that are possible candidates for motion control synchronous reluctance motor applications. The examined torque-control algorithms are direct torque control (DTC) and hysteresis current vector control (HCVC).
Wydawca
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111, Egry J. Street 18, Budapest, Hungary
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111, Egry J. Street 18, Budapest, Hungary
  • Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111, Egry J. Street 18, Budapest, Hungary
Bibliografia
  • Antonello, R., Carraro, M., Peretti, L. and Zigliotto, M. (2016). Hierarchical Scaled-States Direct Predictive Control of Synchronous Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 63(8), pp. 5176–5185.
  • Bianchi, N., Bolognani, S., Carraro, E., Castiello, M. and Fornasiero, E. (2016). Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 52(6), pp. 4762–4769.
  • Buja, G. S. and Kazmierkowski, M. P. (2004). Direct Torque Control of PWM Inverter-Fed AC Motors — A Survey. IEEE Transactions on Industrial Electronics, 51(4), pp. 744–757.
  • Grabowski, P. Z., Kazmierkowski, M. P., Bose, B. K. and Blaabjerg, F. (2000). A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive. IEEE Transactions on Industrial Electronics, 47(4), pp. 863–870.
  • Guagnano, A., Rizzello, G., Cupertino, F. and Naso, D. (2016). Robust Control of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 52(5), pp. 3990–4000.
  • Hadla, S. C. H. (2016). Active flux based finite control set model predictive control of synchronous reluctance motor drives. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe (Germany), pp. 1–10.
  • Hinkkanen, M., Asad, A. A. H., Qu, Z., Tuovinen, T. and Briz, F. (2016). Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design. IEEE Transactions on Industry Applications, 52(2), pp. 1530–1541.
  • Juhasz, G., Halasz, S. and Veszpremi, K. (2000). New aspects of a direct torque controlled induction motor drive. In: Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), Goa (India), pp. 43–48.
  • Ma, X., Li, G., Zhu, Z., Jewell, G. W. and Green, J. (2018). Investigation on Synchronous Reluctance Machines with Different Rotor Topologies and Winding Configurations. IET Electric Power Applications, 12(1), pp. 45–53.
  • Malinowski, M., Kazmierkowski, M. P., Hansen, S., Blaabjerg, F. and Marques, G. D. (2001). Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industry Applications, 37(4), pp. 1019–1027.
  • Malinowski, M., Kazmierkowski, M. P. and Trzynadlowski, A. M. (2003). A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. IEEE Transactions on Power Electronics, 18(6), pp. 1390–1396.
  • Mishra, T., Devanshu, A., Kumar, N. and Kulkarni, A. R. (2016). Comparative analysis of Hysteresis Current Control and SVPWM on Fuzzy Logic based vector controlled Induction Motor Drive. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi (India), pp. 1–6.
  • Nardo, M. D., Calzo, G. L., Galea, M. and Gerada, C. (2018). Design Optimization of a High-Speed Synchronous Reluctance Machine. IEEE Transactions on Industry Applications, 54(1), pp. 233–243.
  • Orłowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 36(1), pp. 5–25.
  • Purohit, P. and Dubey, M. (2014). Analysis and design of hysteresis current controlled multilevel inverter fed PMSM drive. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, pp. 1–5.
  • Schmidt, I. and Veszpremi, K. (2005). Application of direct controls to variable-speed wind generators. In: 2005 International Conference on Industrial Electronics and Control Applications, Quito (Ecuador), pp. 1–6.
  • Staudt, S., Stock, A., Kowalski, T., Teigelkötter, J. and Lang, K. (2015). Raw data based model and high dynamic control concept for traction drives powered by synchronous reluctance machines. In: 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino (Italy), pp. 204–209.
  • Schmidt, I., Vincze, K., Veszpremi, K. and Seller, B. (2001). Adaptive Hyste-resis Current Vector Control of Synchronous Servo Drives With Different Tolerance Areas. Periodica Polytechnica Electrical Engineering, 45(3–4), pp. 211–222.
  • Vajsz, T., Számel, L. and Rácz, G. (2017). A Novel Modified DTC-SVM Method with Better Overload-Capability for Permanent Magnet Synchronous Motor Servo Drives. Periodica Polytechnica Electrical Engineering and Computer Science, 61(3), pp. 253–263.
  • Veszpremi, K. and Schmidt, I. (2008). Direct controls in voltage-source converters — Generalizations and deep study. In: 2008 13th International Power Electronics and Motion Control Conference, Poznan (Poland), pp. 1803–1810.
  • Zhang, X. and Foo, G. H. B. (2016). A Robust Field-Weakening Algorithm Based on Duty Ratio Regulation for Direct Torque Controlled Synchronous Reluctance Motor. IEEE/ ASME Transactions on Mechatronics, 21(2), pp. 765–773.
  • Zhang, X., Foo, G. H. B., Vilathgamuwa, D. M. and Maskell, D. L. (2015). An Improved Robust Field-Weakening Algorithm for Direct-Torque-Controlled Synchronous-Reluctance-Motor Drives. IEEE Transactions on Industrial Electronics, 62(5), pp. 3255–3264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5205d5bf-bcb6-42dd-9036-03d625d93ce8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.