PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the current-voltage characteristics of the photovoltaic cells using the CoachLabII+ measuring console

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie charakterystyk prądowo-napięciowych ogniw fotowoltaicznych z wykorzystaniem konsoli pomiarowej CoachLabll+
Języki publikacji
EN
Abstrakty
EN
The Coach6 software and the CoachLabII+ measuring console coupled with a computer and equipped with appropriate voltage and current sensors were used to determine the current-voltage and power-voltage characteristics of the photovoltaic cells. The current-voltage and power-voltage characteristics for a single cell and cells connected in series and in parallel were tested depending on the light intensity. Using a simplified theoretical model of a photovoltaic cell based on the one-diode equivalent circuit and Shockley diode equation, the ideality factor, diode saturation current and source current were determined, fitting the appropriate theoretical relationship to the measurement results. Based on the current-voltage and power-voltage characteristics, the short-circuit current, open circuit voltage, maximum power, fill factor, conversion efficiency and load resistance were determined. The dependence of the determined parameters on the light intensity was discussed.
PL
Do wyznaczenia charakterystyk prądowo-napięciowych oraz mocowo-napięciowych ogniw fotowoltaicznych wykorzystano oprogramowanie Coach6 oraz konsolę pomiarową CoachLabII+ sprzężoną z komputerem i wyposażoną w odpowiednie czujniki napięcia i prądu. Charakterystyki prądowo-napięciowe dla pojedynczego ogniwa oraz ogniw połączonych szeregowo i równolegle badano w zależności od natężenia światła. Wykorzystując uproszczony model teoretyczny ogniwa fotowoltaicznego bazujący na pojedynczej diodzie oraz wzorze Shockley'a dla prądu diody półprzewodnikowej wyznaczono współczynnik korekcji, prąd wsteczny oraz prąd źródła, dopasowując odpowiednie zależności teoretyczne do wyników pomiarów. Na podstawie charakterystyk prądowo-napięciowych oraz mocowo-napięciowych wyznaczono prąd zwarcia, napięcie obwodu otwartego, moc maksymalną, współczynnik wypełnienia, sprawność konwersji ogniwa oraz rezystancję obciążenia. Zaobserwowano zależność wyznaczonych parametrów od natężenia światła.
Twórcy
  • Stanisław Staszic University of Applied Sciences in Piła, Podchorążych 10, 64-920 Piła, Poland
Bibliografia
  • [1] Owusu P.A., Asumadu-Sarkodie S. (2016) “A review of renewable energy sources, sustainability issues and climate change mitigation”. Cogent Engineering. Vol. 3, 1167990, doi: 10.1080/23311916.2016.1167990
  • [2] Ellabban O., Abu-Rub H., Blaabjerg F. (2014) “Renewable energy resources: Current status, future prospects and their enabling technology”. Renewable and Sustainable Energy Reviews. Vol. 39, pp 748-764, doi: 10.1016/j.rser.2014.07.113
  • [3] Fouad M.A., Shihata L.A., Morgana El-S.I. (2017) “An integrated review of factors influencing the perfomance of photovoltaic panels”. Renewable and Sustainable Energy Reviews. Vol. 80, pp 1499-1511, doi: 10.1016/j.rser.2017.05.141
  • [4] Muteri V., Cellura M., Curto D., Franzitta V., Longo S., et al. (2020) “Review on life cycle assessment of solar photovoltaic panels”. Energies. Vol. 13, 252, doi: 10.3390/en13010252
  • [5] Tomaszewski P.E. (2002) “Jan Czochralski—father of the Czochralski method”. Journal of Crystal Growth. Vol. 236, Issues 1–3, pp 1-4, doi: 10.1016/S0022-0248(01)02195-9
  • [6] Sze S.M., Li Y., Ng K.K. “Physics of Semiconductor Devices”. John Wiley & Sons 2021.
  • [7] Kaur N., Singh M., Pathak D., Wagner T., Nunzid J.M. (2014) “Organic materials for photovoltaic applications: Review and mechanism”. Synthetic Metals. Vol. 190, pp 20-26, doi: 10.1016/j.synthmet.2014.01.022
  • [8] Snaith, H.J. (2018) “Present status and future prospects of perovskite photovoltaics”. Nature Mater 17, pp 372–376, doi: 10.1038/s41563-018-0071-z
  • [9] Martínez-Miranda L.J. (2022) “Liquid crystals in photovoltaics”. CRC Press, Boca Raton, Taylor & Francis Group. doi: org/10.1201/9781351175784
  • [10] Kumar M., Kumar S. (2017) “Liquid crystals in photovoltaics: A new generation of organic photovoltaics”. Polymer Journal. Vol. 49, pp 85–111, doi: org/10.1038/pj.2016.109
  • [11] Vinod, Kumar R., Singh S.K. (2018) “Solar photovoltaic modeling and simulation: As a renewable energy solution”. Energy Reports. Vol. 4, pp 701–712, doi: 10.1016/j.egyr.2018.09.008
  • [12] Tamrakar V., Gupta S.C., Yashwant S. (2015) “Single-diode PV cell modeling and study of characteristics of single and two-diode equivalent circuit”. Electrical and Electronics Engineering: An International Journal. Vol 4, pp 13-24 doi: 10.14810/elelij.2015.4302
  • [13] El-Ahmar M.H., El-Sayed A.-H.M., Hemeida A.M., (2016) "Mathematical modeling of photovoltaic module and evalute the effect of varoius paramenters on its performance". Eighteenth International Middle East Power Systems Conference (MEPCON), pp 741-746, doi: 10.1109/MEPCON.2016.7836976
  • [14] Peng L., Sun Y., Meng Z., Wang Y., Xu Y. (2013) “A new method for determining the characteristics of solar cells”. Journal of Power Sources. Vol. 227, pp 131-136, doi: 10.1016/j.jpowsour.2012.07.061
  • [15] Zhang Ch., Zhang J., Hao Y. Lin Z., Zhu Ch. (2011) “A simple and efficient solar cell parameter extraction method from a single current-voltage curve”. Journal of Applied Physics. Vol. 110, 064504, doi: 10.1063/1.3632971
  • [16] Ishibashi K., Kimura Y., Niwano M. (2008) “An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic”. Journal of Applied Physics. Vol. 103, 094507, doi: 10.1063/1.2895396
  • [17] Pastuszak J., Węgierek P. (2022) “Photovoltaic cell generations and current research directions for their development”. Materials. Vol. 15, 5542, doi: 10.3390/ma15165542
  • [18] De Wolf S., Descoeudres A., Holman Z.C., Ballif Ch. (2012) “High-efficiency Silicon Heterojunction Solar Cells: A Review”. Green. Vol. 2, pp. 7–24, doi: 10.1515/green-2011-0018
  • [19] Wu Y., Van Aken B.B., Janssen G., J. Loffler J., Li F., et al. (2014) “Metal wrap through silicon heterojunction solar cells and first made minimodules”. Conference EuPVSEC 2014, Amsterdam
  • [20] Sharma K., Sharma V., Sharma S.S. (2018) “Dye-sensitized solar cells: Fundamentals and current status”. Nanoscale Research Letters. Vol. 13:381, doi: 10.1186/s11671-018-2760-6
  • [21] Abolghasemi R., Rasuli R., Alizadeh M. (2020) “Microwave-assisted growth of high-quality CdSe quantum dots and its application as a sensitizer in photovoltaic cells”. Materials Today Communications. Vol. 22, 100827, doi: 10.1016/j.mtcomm.2019.100827
  • [22] Zuo Ch., Bolink H.J., Han H., Huang J., Cahen D., Ding L. (2016) “Advances in perovskite solar cells”. Advances Science. Vol. 3, 1500324, doi: 10.1002/advs.201500324
  • [23] Schmidt-Mende L., Fechtenkotter A., Mullen K., Moons E. (2001) “Self-organized discotic liquid crystals for high-efficiency organic photovoltaics”. Science. Vol. 293, pp. 1119-1122, doi: 10.1126/science.293.5532.1119
  • [24] Andrienko D. (2018) “Introduction to liquid crystals”. Journal of Molecular Liquids. Vol. 267, pp 520–541, doi: 10.1016/j.molliq.2018.01.175
  • [25] Łempicka-Mirek K., Król M., Sigurdsson H., Wincukiewicz A., Morawiak P., et al. (2022) “Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite”. Science Advances. Vol. 8, eabq7533, doi: 10.1126/sciadv.abq753
  • [26] Bajpai M., Yadav N., Kumar S., Srivastava R., Dhar R. (2015) “Bulk heterojunction solar cells based on self-assembling disc-shaped liquid crystalline material”. Liquid Crystals, Vol. 43, pp 305-313, doi: 10.1080/02678292.2015.1108466
  • [27] Zheng O., Guojia Fang G., Bai W., Sun N., Qin P., et al. (2011) “Efficiency improvement in organic solar cells by inserting a discotic liquid crystal”. Solar Energy Materials & Solar Cells. Vol. 95, pp 2200–2205, doi: 10.1016/j.solmat.2011.03.024
  • [28] Högberg D., Soberats B., Uchida S., Yoshio M., Lars Kloo L., et al. (2014) “Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells”. Chemical Materials. Vol. 26, pp 6496–6502, doi: 10.1021/cm503090z
  • [29] Różański S.A. (2020) “Computer-aided experiments in student physics laboratory”. Acta Physica Polonica B Proceedings Supplement. Vol. 13, Issue 4. pp 937-942, doi: 10.5506/APhysPolBSupp.13.937
  • [30] Breitenstein O. (2013) “Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions”. Opto−Electronics Review. Vol. 21, Issue 3. pp 259–282, doi: 10.2478/s11772-013-0095-5
  • [31] Chegaar M., Hamzaoui A., Namoda A., Petit P., Aillerie M., Herguth A. (2013) “Effect of illumination intensity on solar cells parameters”. Energy Procedia. Vol. 36, pp 722 – 729, doi: 10.1016/j.egypro.2013.07.084
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5205605e-8bda-4d88-84b2-d0415c9cc958
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.