PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A high gain variable boost DC-DC converter for low-voltage hybrid direct methanol fuel cell batteries

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przekształtnik DC-DC o zmiennym wysokim wzmocnieniu do niskonapięciowych hybrydowych akumulatorów ogniwem paliwowym z metanolem
Języki publikacji
EN
Abstrakty
EN
Direct Methanol Fuel Cells (DMFCs) are emerging as primary power sources for portable applications due to their high energy density, easy-to-handle liquid fuel, and low temperature. They have a longer cell lifetime and are small and lightweight. However, there are several problems associated with typical DMFCs due to their slow dynamic response, long start-up time, and issues related to their unregulated low-level output voltage and current. This study describes the development of a DC-DC converter for a low-voltage (i.e., less than 5 V) DMFC. This study also presents a hybrid power source that consists of a battery and a DMFC and analyses, via software simulation, every component of the boost converter that influences its output. The proposed DC-DC converter is capable of boosting the voltage of the DMFC from 3 V to 60 V. The output voltage of this converter is regulated and applied to an LED lamp.
PL
Ogniwa paliwowe z bezpośrednim metanolem (DMFC) stają się coraz ważniejszym źródłem zasilania w zastosowaniach przenośnych ze względu na ich wysoką gęstość energii, łatwe w obsłudze paliwo ciekłe i niską temperaturę. Mają dłuższą żywotność ogniw i są małe i lekkie. Istnieje jednak kilka problemów związanych z typowymi DMFC ze względu na ich powolną reakcję dynamiczną, długi czas rozruchu oraz problemy związane z ich nieregulowanym napięciem i prądem wyjściowym niskiego poziomu. Niniejsze badanie opisuje rozwój konwertera DC-DC dla niskonapięciowego (tj. poniżej 5 V) DMFC. W niniejszym opracowaniu przedstawiono również hybrydowe źródło zasilania, które składa się z akumulatora i DMFC oraz analizuje, za pomocą symulacji programowej, każdy element przetwornicy doładowania, który wpływa na jego moc wyjściową. Proponowana przetwornica DC-DC jest w stanie podnieść napięcie DMFC z 3 V do 60 V. Napięcie wyjściowe tej przetwornicy jest regulowane i podawane na lampę LED.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 25., rys., tab.
Twórcy
autor
  • Department of Electrical, Electronics and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysi
  • Electrical Engineering Department, German-Malaysian Institute, Jalan Ilmiah, Taman Universiti,43000, Kajang, Selangor, Malaysia
  • Institute of IR 4.0, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Industrial Engineering and Automotive, Nebrija University, Campus de la Dehesa de la Villa, Calle Pirineos, 55, 28040 Madrid, Spain
  • Department of Electrical, Electronics and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
  • Department of Electrical, Electronics and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
Bibliografia
  • 1. Gharibeh, H.F.; Yazdankhah, A.S.; Azizian, M.R. Energy management of fuel cell electric vehicles based on working condition identification of energy storage systems, vehicle driving performance, and dynamic power factor. J. Energy Storage 2020, 31, 101760.
  • 2. Fadzillah, D.M.; Kamarudin, S.K.; Zainoodin, M.A.; Masdar, M.S. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. Int. J. Hydrogen Energy 2019, 44, 3031–3054.
  • 3. Tabatabaei, S.; Askari, M.R. Considering uncertainty in the fuel cell and capacitor allocation problem using a novel self adaptive modification approach. J. Intell. Fuzzy Syst. 2015, 28, 2213–2224.
  • 4. Kwon, J.M.; Kwon, B.H. High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems. IEEE Trans. Power Electron. 2009, 24, 108–115.
  • 5. Alias, M.S.; Kamarudin, S.K.; Zainoodin, A.M.; Masdar, M.S. Active direct methanol fuel cell: An overview. Int. J. Hydrogen Energy 2020, 45, 19620–19641.
  • 6. Ferdowsi, F.; Maleki, H.R.; Niroomand, S. A credibility-based hybrid fuzzy programming approach for a bi-objective refueling alternative fuel vehicles problem under uncertainty. J. Intell. Fuzzy Syst. 2018, 34, 2385–2399.
  • 7. Kwon, J.M.; Kim, Y.J.; Cho, H.J. High-efficiency active DMFC system for portable applications. IEEE Trans. Power Electron. 2011, 26, 2201–2209.
  • 8. Li, H.; Guo, H.; Yousefi, N. A hybrid fuel cell/battery vehicle by considering economy considerations optimized by Converged Barnacles Mating Optimizer (CBMO) algorithm. Energy Reports 2020, 6, 2441–2449.
  • 9. Yu, Y. Bin; Liu, X.; Min, H.; Sun, H.; Xu, L. A novel fuzzy-logic based control strategy for a semi-active battery/super-capacitor hybrid energy storage system in vehicular applications. In Proceedings of the Journal of Intelligent and Fuzzy Systems; IOS Press, 2015; Vol. 29, pp. 2575–2584.
  • 10. Feng, Y.; Dong, Z. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining truck. J. Power Sources 2020, 454, 227948.
  • 11. Kamel, A.A.; Rezk, H.; Abdelkareem, M.A. Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy. Int. J. Hydrogen Energy 2020.
  • 12. Krishan, O.; Suhag, S. Grid-independent PV system hybridization with fuel cell-battery/supercapacitor: Optimum sizing and comparative techno-economic analysis. Sustain. Energy Technol. Assessments 2020, 37, 100625.
  • 13. Turksoy, A.; Teke, A.; Alkaya, A. A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles. Renew. Sustain. Energy Rev. 2020, 133, 110274.
  • 14. Thounthong, P.; Mungporn, P.; Guilbert, D.; Takorabet, N.; Pierfederici, S.; Nahid-Mobarakeh, B.; Hu, Y.; Bizon, N.; Huangfu, Y.; Kumam, P. Design and control of multiphase interleaved boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications. Int. J. Electr. Power Energy Syst. 2021, 124, 106346.
  • 15. Sarker, M.R.; Mohamed, R. A Batteryless low input voltage micro-scale thermoelectric based energy harvesting interface circuit with 100mV start-up voltage. Prz. Elektrotechniczny 2014, 90.
  • 16. Ali, M.S.; Kamarudin, S.K.; Masdar, M.S.; Mohamed, A. An overview of power electronics applications in fuel cell systems: DC and AC converters. Sci. World J. 2014, 2014.
  • 17. Lee, B. Do; Jung, D.H.; Ko, Y.H. Analysis of DMFC/battery hybrid power system for portable applications. J. Power Sources 2004, 131, 207–212.
  • 18. Alotto, P.; Guarnieri, M.; Moro, F. Modeling and Control of Fuel Cell-Battery Hybrid Power Systems for Portable Electronics. In Proceedings of the Proceedings of the Universities Power Engineering Conference; 2008.
  • 19. Sarker, M.R.; Mohamed, A.; Mohamed, R. Vibration Based Piezoelectric Energy Harvesting Utilizing Bridgeless Rectifier Circuit 2016.
  • 20. Sarker, M.R.; Mohamed, A.; Mohamed, R. Improved proportional-integral voltage controller for a piezoelectric energy harvesting system converter utilizing lightning search algorithm. Ferroelectrics 2017, 514, 123–145.
  • 21. Sarker, M.; Mohamed, A.; Mohamed, R.; Sarker, M.R.; Mohamed, A.; Mohamed, R. A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller. Micromachines 2016, 7, 171.
  • 22. Rashid, Power Electronics: Circuits, Devices & Applications, 4th Edition | Pearson.
  • 23. Zhu, G.R.; Loo, K.H.; Lai, Y.M.; Tse, C.K. Quasi-maximum efficiency point tracking for direct methanol fuel cell in DMFC/supercapacitor hybrid energy system. IEEE Trans. Energy Convers. 2012, 27, 561–571.
  • 24. Kim, Y.; Shin, D.; Seo, J.; Chang, N.; Cho, H.; Kim, Y.; Yoon, S. System integration of a portable direct methanol fuel cell and a battery hybrid. Int. J. Hydrogen Energy 2010, 35, 5621–5637.
  • 25. Yuan, Z.; Zhang, Y.; Leng, J.; Zhao, Y.; Liu, X. Performance of air-breathing direct methanol fuel cell with Au-coated aluminum current collectors. Int. J. Hydrogen Energy 2012, 37, 2571– 2578.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-520475e2-1438-46f5-b96e-db3edb6bea85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.