PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Drying Conditions on the Characteristics and Performance of B/Fe2O3 Nano-Composites Prepared by Sol-Gel Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
B/Fe2O3 samples were prepared by mixing nano sized boron powder with iron oxide xerogels that had been synthesized using a sol-gel method that included various types of proton scavengers such as 1,2-epoxybutane, tetrahydrofuran, 1,4-dioxane and ammonium hydroxide. The effects of the proton scavengers and drying conditions on the textural properties of the iron oxide samples and on the heat output and thermal behavior of the nano-composites were examined. The iron oxide samples were subjected to direct drying (DD) or sequential solvent exchange (SSE). The heat output values of the B/Fe2O3 nano-composites varied from 240 to 1200 J/g depending on the drying condition and the proton scavenger used. It was found that the thermal behaviour and the textural properties of B/Fe2O3 nano-composites (such as porosity, surface area and crystallinity) could be tailored by both the drying conditions and the proton scavenger used.
Rocznik
Strony
85--106
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Roketsan Inc, Ankara, PO Box 30, Turkey
  • Middle East Technical University, Ankara, 06800, Turkey
Bibliografia
  • [1] Staley, C.S.; Morris, C.J.; Thiruvengadathan, R.; Apperson, S.J.; Gangopadhyay, K.; Gangopadhyay S. Silicon-based Bridge Wire Micro-chip Initiators for Bismuth Oxide-Aluminum Nanothermite. J. Micromech. Microeng. 2011, 21: 115015.
  • [2] Zhang, K.L.; Choua, S.K.; Ang, S.S.; Tang, X.S. A MEMS-based Solid Propellant Microthruster with Au/Ti Igniter. Sens. Actuators, A 2005, 122: 113-123.
  • [3] Martirosyan, K.S.; Wang, L.; Vicent, A.; Luss, D. Nanoenergetic Gas-generators: Design and Performance. Propellants Explos. Pyrotech. 2009, 34, 532-538.
  • [4] Brinker, C.J.; Scherer, G.W. Sol-Gel Science. Academic Press, Boston, 1990; ISBN 978-0-12-134970-7.
  • [5] Schoenitz, M.; Ward, T.S.; Dreizin E.L. Fully Dense Nano-composite Energetic Powders Prepared by Arrested Reactive Milling. Proc. Combust. Inst. 2005, 30: 2071-2078.
  • [6] Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Satcher, J.H. (Jr.); Poco, J.F. Nanostructured Energetic Materials Using Sol-gel Methodologies. J. Non-Cryst. Solids 2001, 285: 338-345.
  • [7] Clapsaddle, B.J.; Zhao, L.; Prentice, D.; Pantoya, M.L.; Gash, A.E.; Satcher, J.H. (Jr.); Shea, K.J.; Simpson, R.L. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods. ICT Ann. Conf., Proc., 36th, Karlsruhe, Germany, 2005.
  • [8] Walker, J.; Tannenbaum, R. Formation of Nanostructured Energetic Materials via Modified Sol-Gel Synthesis. MRS Proc. 2003, 800: AA7.8.1-AA7.8.10.
  • [9] Prakash, A.; McCormick, A.V.; Zachariah, M.R. Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core-Shell Nanostructure. Nano Lett. 2005, 5(7): 1357-1360.
  • [10] Malchi, J.Y.; Foley, T.J.; Yetter, R.A. Electrostatically Self-Assembled Nanocomposite Reactive Microspheres. ACS Appl. Mater. Interf. 2009, 1(11): 2420-2423.
  • [11] Kim, S.H.; Zachariah, M.R. Enhancing the Rate of Energy Release from Nanoenergetic Materials by Electrostatically Enhanced Assembly. Adv. Mater. 2004, 16: 1821-1825.
  • [12] Churaman, W.A.; Currano, L.J.; Becker, C. Initiation and Reaction Tuning of Nanoporous Energetic Silicon. J. Phys. Chem. Solids 2010, 71: 69-74.
  • [13] Churaman, W.A.; Becker, C.R.; Metcalfe, G.D.; Hanrahan, B.M.; Currano, L.J.; Stoldt, C.R. Optical Initiation of Nanoporous Energetic Silicon for Safing and Arming Technologies. Optical Technologies for Arming, Safing, Fuzing, and Firing VI, Vol. 7795, 2010.
  • [14] Currano, L.J.; Churaman, W.A. Energetic Nanoporous Silicon Devices. J. Microelectromech. Sys. 2009, 18: 799-807.
  • [15] Feynman, R.P. There’s Plenty of Room at the Bottom. American Physical Society, Pasadena, 1959.
  • [16] Goldschmidt, H.; Weil, O. Method of Manufacturing Metals. Patent US 895, 1908.
  • [17] Livage, J.; Henry, M.; Sanchez, C. Sol-gel Chemistry of Transition Metal Oxides. Prog. Solid State Chem. 1988, 18: 259-341.
  • [18] Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, Weinheim, 2003.
  • [19] Jolivet, J.P.; Henry, M.; Livage, J. Metal Oxides Chemistry and Synthesis: From Solution to Solid State. John Wiley & Sons, Chichester, 2000.
  • [20] Son, S.F.; Yetter, R.A.; Yang, V. Introduction: Nanoscale Composite Energetic Materials. J. Propul. Power 2007, 23: 643.
  • [21] Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogels Handbook: Advances in Sol-gel Derived Materials and Technologies. Springer, New York, 2011.
  • [22] Pantoya, M.L.; Granier, J.J. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Compositions. Propellants Explos. Pyrotech. 2005, 30(1): 53-62.
  • [23] Shimojo, F.; Nakano, A.; Kalia, R.K.; Vashishta, P. Electronic Processes in Fast Thermite Chemical Reactions: A First-principles Molecular Dynamics Study. Phys. Rev. E 2008, 77: 066103.
  • [24] Levitas, V.I.; Asay, B.W.; Son, S.F.; Pantoya, M. Melt Dispersion Mechanism for Fast Reaction of Nanothermites. Appl. Phys. Lett. 2006, 89: 071909.
  • [25] Danen, W.C.; Martin, J.A. Energetic composites. Patent US 5266132, 1993.
  • [26] Thiruvengadathan, R.; Bezmelnitsyn, A.; Apperson, S.; Staley, C.; Redner, P.; Balas, W.; Nicolich, S.; Kapoor, D.; Gangopadhyay, K.; Gangopadhyay, S. Combustion Characteristics of Novel Hybrid Nanoenergetic Formulations. Combust. Flame 2011, 158: 964-978.
  • [27] Brown, M.E.; Taylor, S.J.; Tribelhorn, M.J. Fuel-oxidant Particle Contact in Binary Pyrotechnic Reactions. Propellants Explos. Pyrotech. 1998, 23: 320-327.
  • [28] Kofstad, P. High-Temperature Oxidation of Metals. Wiley, New York, 1966.
  • [29] Prentice, D.; Pantoya, M.L.; Clapsaddle, B.J. Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2. LLNL, UCRL-JRNL-209471, 2005.
  • [30] HSC Chemistry: Version 9.0.1, Qutotec, Research Center, Finland.
  • [31] Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of van der Waals Adsorption of Gases. J. Am. Chem. Soc., 1940, 62: 1723.
  • [32] Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids. Academic Press, London, 1999.
  • [33] Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57(4): 603-619.
  • [34] Serna, C.J.; Morales, M.P. Maghemite (γ-Fe2O3): A Versatile Magnetic Colloidal Material. Surf. Colloid Sci. 2004, 17: 27-81.
  • [35] Ferguson, A.; Hass, M. Magnetic Structure and Vacancy Distribution in γ-Fe2O3 by Neutron Diffraction. Phys. Rev. Lett. 1958, 112: 1130.
  • [36] Setvin, M.; Wagner, M.; Schmid, M.; Parkinson, G.S.; Diebold, U. Surface Point Defects on Bulk Oxides: Atomically-resolved Scanning Probe Microscopy. Chem. Soc. Rev. 2017, 46: 1772.
  • [37] Van der Steen, A.C.; Verbeek, H.J.; Meulenbrugge, J.J. Influence of RDX Crystal Shape on the Shock Sensitivity of PBXs. Symp. Det., Proc., 9th, Portland, OR, 1989, 83.
  • [38] Borne, L. Influence of Intragranular Cavities of RDX Particle Batches on the Sensitivity of Cast Wax Bonded Explosives. Symp. Det., Proc., 10th, Boston, MA, 1993, 286.
  • [39] Baer, M.R. Modeling Heterogeneous Energetic Materials at the Mesoscale. Thermochim. Acta 2002, 384: 351-367.
  • [40] Morales, M.P.; Pecharroman, C.; González-Carreño, T.; Serna, C.J. Structural Characterisation of Uniform γ-Fe2O3 Particles with Different Axial (Length/Width) Ratios. J. Solid State Chem. 1994, 108, 158-16.
  • [41] Morales, M.P.; de Julián, C.; González, J.M.; Serna, C.J. The Effect of Vacancies Distribution on the Magnetic Properties of γ-Fe2O3 Particles. J. Mater. Res. 1994, 9, 135-141.
  • [42] Morales, M.P.; Serna, C.J.; Bødker, F.; Mørup, S. Spin-Canting Due to Structural Disorder in Maghemite. J. Phys.: Condens. Matter 1997, 9: 5461-5467.
  • [43] Bastow, T.J.; Trinchi, A.; Hill, M.R.; Harris, R.; Muster, T.H. Vacancy Ordering in γ-Fe2O3 Nanocrystals Observed by 57Fe NMR. J. Magn. Magn. Mater. 2009, 321: 2677-2681.
  • [44] Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. (in German) Nachr. Ges. Wiss. Göttingen, 1918, 26: 98-100.
  • [45] Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11: 102-113.
  • [46] Rasulic, G.; Jovanovic, S.; Milanovic, L. Ammonium Nitrate Changes during Thermal Analysis. J. Therm. Anal. 1985, 30: 65-72.
  • [47] Chaturvedi, S.; Dave, P.N. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31: 1-26.
  • [48] Wang, X.; Zhou, W.; DeLisio, J.B.; Egan, G.C.; Zachariah, M.R. Doped δ-Bismuth Oxides to Investigate Oxygen Ion Transport as a Metric for Condensed Phase Thermite Ignition. J. Phys. Chem. 2017, 121: 147-152.
  • [49] Boyapati, S.; Wachsman, E.D.; Jiang, N. Effect of Oxygen Sublattice Ordering on Interstitial Transport Mechanism and Conductivity Activation Energies in Phasestabilized Cubic Bismuth Oxides. Solid State Ionics 2001, 140(1): 149-160.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52023b23-06f7-424c-b743-abee599942ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.