Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wyznaczanie parametru charakterystycznego dla filtru TEOCFCC w rozpoznaniu głosu w zaszumionym środowisku
Języki publikacji
Abstrakty
This paper proposes TEO-CFCC characteristic parameter extraction method. Signal phase matching is applied to eliminate speech noise on the basis of CFCC characteristic parameter, and then Teager energy operator is added to the acquisition of CFCC characteristic parameter. In this way TEO-CFCC characteristic parameter is obtained and the energy of speech becomes one of the characteristic parameters for speaker recognition. Experiment results show that the recognition accuracy can reach to 83.2% in a -5dB SNR of vehicle interior noise environment by using TEO-CFCC characteristic parameter.
W artykule przedstawiono metodę wyznaczania parametrów charakterystycznych filtru TEO-CFCC. Zastosowano tu dopasowywanie fazowe sygnału, dla eliminacji z mowy szumów oraz operator Teagera do wyrugowania parametrów. Badania eksperymentalne pokazuję, że dokładność rozpoznania głosu wynosi 83,2% przy -5dB SNR we wnętrzu pojazdu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
118--121
Opis fizyczny
Bibliogr. 11 poz., schem., wykr.
Twórcy
autor
- School of Information Science & Engineering, Northeastern University, Shenyang, China
autor
- School of Information Science & Engineering, Northeastern University, Shenyang, China
autor
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University,Shenyang, China
autor
- School of Information Science & Engineering, Northeastern University, Shenyang, China
autor
- School of Information Science & Engineering, Northeastern University,Shenyang, China
Bibliografia
- [1] Dulas J. Automatic word's identification algorithm used for digits classification [J]. Przeglad Elektrotechniczny,87(2011), No.11, 230-233.
- [2] Dulas J. Speech signal's automatic segmentation based on the grid with various parameter's method [J]. Przeglad Elektrotechniczny,86(2010), No.1, 229-232.
- [3] Dobrowolski A P,Majda E. Evaluation of the usefulness of selected features of the speech signal for automatic speaker recognition systems [J]. Przeglad Elektrotechniczny, 87(2011) No.10, 193-197.
- [4] Vijayasenan D,Valente F, Bourlard H. Multistream speaker diarization of meetings recordings beyond MFCC and TDOA features. Speech Communication, 54(2012) , No.7, 55-67.
- [5] Wang L,Minami K,Yamamoto K,et al. Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions. IEICE Transactions on Information and Systems, E93D(2011), No.9, 2397-2406.
- [6] Li Q,Huang Y. An Auditory-Based Feature Extraction Algorithm for Robust Speaker Identification Under Mismatched Conditions. IEEE Transactions on Audio Speech and Language Processing, 19(2011), No.1, 1791-1801.
- [7] Qi L. An auditory-based transfrom for audio signal processin. 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, United states.Oct18-21, (2009). 181-184.
- [8] Dimitriadis D,Maragos P,Potamianos A. On the Effects of Filterbank Design and Energy Computation on Robust Speech Recognition. IEEE Transactions on Audio Speech and Language Processing, 19(2011), No.4, 1504-1516.
- [9] Tu C-C,Juang C-F. Recurrent type-2 fuzzy neural network using Haar wavelet energy and entropy features for speech detection in noisy environments. Expert Systems With Applications, 39(2012), No.7, 2479-2488.
- [10] Lou Hongwei,Hu Guangrui. Speech Feature Based on Teager Energy Operator and Dyadic Wavelet Transform, Journal of Shanghai Jiaotong University, 37(2009), No.2, 83-85.
- [11] Sun Jincai, Zhu Weijie,Sun Tieyuan. DOA and Waveform Estimation by Using Small-Dimension Array, Journal of Northwestern Rolytechnical University, 21(2003), No.4,512-515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51ffa001-645d-42fa-beca-9c65b9a8d235