PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residues of difenoconazole in various ready premixes with propiconazole, cyflufenamid, and mandipropamid in/on tomato fruits

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Residues of the fungicides difenoconazole, propiconazole, cyflufenamid, and mandipropamid were determined in tomato fruit using acetonitrile for extraction and LC-MS/MS for quantification. Validation criteria include linearity range, the limit of detection (LOD) and limit of quantitation (LOQ), accuracy in terms of precision and trueness, and matrix effect were studied. The recovery rates of the method ranged from 91.8 to 106.3%. The precision of the method in terms of repeatability at one day (RSDr) and between three days (RSDR) ranged from 2.8 to 6.4% and from 4.3 to 7.6%, respectively, with good trueness from 92.2 to 96.4%. Matrix effects (suppression effects) ranged from 3.8% to 11.1%. The validated method was used to evaluate the dissipation kinetics of three different premix formulations: 30% EC (15% difenoconazole þ 15% propiconazole), 14% DC (12.5% difenoconazole þ 1.5% cyflufenamid), and 50% SC (25% difenoconazole þ 25% mandipropamid) used on field tomatoes in Egypt. A first-order kinetic equation best describes residue dissipation. The calculated half-lives of difenoconazole, propiconazole, cyflufenamid, and mandipropamid were 2.01–2.27, 1.89, 1.97, and 1.71 days, respectively. The dissipation rate of difenoconazole did not differ significantly in the three premix formulations. Mandipropamid also dissipated faster compared to the other fungicides tested. The chronic dietary risk assessment results showed a minimal risk to adult Egyptian consumers. Waiting periods were advised for the safe consumption of tomatoes treated with the tested premix formulations.
Rocznik
Strony
206–--217
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
  • Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, 12618, Egypt
  • Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, 12618, Egypt
  • Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, 12618, Egypt
  • Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, P.O. Box 6622, Buraydah, 51452, Al-Qassim, Saudi Arabia
Bibliografia
  • 1. Dorais, M.; Ehret, D. L.; Papadopoulos, A. P. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem. Rev. 2008, 7(2), 231.
  • 2. FAOSTAT Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed on March 7, 2022).
  • 3. Matyjaszczyk, E. Plant protection in Poland on the eve of obligatory integrated pest management implementation. Pest Manag. Sci. 2013, 69(9), 991–5.
  • 4. Kim, I. S.; Beaudette, L. A.; Han Shim, J.; Trevors, J. T.; Tack Suh, Y. Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant and Soil 2002, 239(2), 321–31.
  • 5. Rueegg, J.; Siegfried, W. Residues of difenoconazole and penconazole on apple leaves and grass and soil in an apple orchard In north-eastern Switzerland. Crop. Prot. 1996, 15(1), 27–31.
  • 6. Sano, S.; Kasahara, I.; Yamanaka, H. Development of a novel fungicide, cyflufenamid. J. Pestic. Sci. 2007, 32(2), 137–8.
  • 7. Fanigliulo, A. and M. Sacchetti. Mandipropamid: new fungicide against Phytophthora infestans on tomato. in II International Symposium on Tomato Diseases 808. 2007.
  • 8. Teng, M.; Zhu, W.; Wang, D.; Qi, S.; Wang, Y.; Yan, J.; Dong, K.; Zheng, M.; Wang, C. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 112–20.
  • 9. Wang, Z. H.; Yang, T.; Qin, D. M.; Gong, Y.; Ji, Y. Determination and dynamics of difenoconazole residues in Chinese cabbage and soil. Chin. Chem. Lett. 2008, 19(8), 969–72.
  • 10. Mukhopadhyay, S.; Das, S.; Bhattacharyya, A.; Pal, S. Dissipation study of difenoconazole in/on chili fruit and soil in India. Bull. Environ. Contamtoxicol. 2011, 87(1), 54–7.
  • 11. Banerjee, K.; Oulkar, D. P.; Patil, S. H.; Dasgupta, S.; Adsule, P. G. Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residues in grape. Pest Manag. Sci. formerly Pestic. Sci. 2008, 64(3), 283–9.
  • 12. Hingmire, S.; Oulkar, D. P.; Utture, S. C.; Shabeer, T. A.; Banerjee, K. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chem. 2015, 176, 145–51.
  • 13. Malhat, F. M.; Mahmoud, H. A. Dissipation and Residues of Mandipropamid in Grape Using QuEChERS Methodology and HPLC-DAD; ISRN, 2012.
  • 14. Panovska, T. K.; Kavrakovski, Z.; Bauer, S. Determination of propiconazole residues in tomatoes by gas chromatography. Bull. Chem. Technol. Macedonia 2000, 19(1), 27–33.
  • 15. Dedola, F.; Cabizza, M.; Satta, M. Determination of 28 pesticides applied on two tomato cultivars with a different surface/weight ratio of the berries, using a multiresidue GC-MS/MS method. J. Environ. Sci. Health B 2014, 49(9), 671–8.
  • 16. Garland, S. M.; Menary, R. C.; Davies, N. W. Dissipation of propiconazole and tebuconazole in peppermint crops (Mentha piperita (Labiatae)) and their residues in distilled oils. J. Agric. Food Chem. 1999, 47(1), 294–8.
  • 17. Wang, K.; Wu, J.; Zhang, H. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicol Environ. Saf. 2012, 86, 111–5.
  • 18. Kong, Z.; Dong, F.; Xu, J.; Liu, X.; Zhang, C.; Li, J.; Li, Y.; Chen, X.; Shan, W.; Zheng, Y. Determination of difenoconazole residue In tomato during home canning by UPLC-MS/MS. Food Cont. 2012, 23(2), 542–6.
  • 19. Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Wang, D.; Liu, X. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chem. 2015, 168, 396–403.
  • 20. Huan, Z.; Xu, Z.; Lv, D.; Xie, D.; Luo, J. Dissipation and residues of difenoconazole and azoxystrobin in bananas and soil in two agroclimatic zones of China. Bull. Environ. Contamtoxicol. 2013, 91(6), 734–8.
  • 21. Xu, J.; Long, X.; Ge, S.; Li, M.; Chen, L.; Hu, D.; Zhang, Y. Deposition amount and dissipation kinetics of difenoconazole and propiconazole applied on banana with two commercial spray adjuvants. RSC Adv. 2019, 9(34), 19780–90.
  • 22. Lehotay, S. J.; Son, K. A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A. 2010, 1217(16), 2548–60.
  • 23. SANTE/12682/2019 Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf (Accessed on Febraury 25, 2023).
  • 24. Hoskins, W. Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Prot. Bull. 1961, 9, 214–5.
  • 25. FAO Manual on the Submission and Evaluation of Pesticide Residues Data; Food and Agriculture Organization: Rome, 2009.
  • 26. WHO GEMS/food Regional Diets (Regional Per Capita Consumption of Raw and Semiprocessed Agricultural Commodities), 2003. http://www.who.int/foodsafety/publications/chem/regional_diets/en (Accessed on Febraury 25, 2023).
  • 27. Fu, Y.; Yang, T.; Zhao, J.; Zhang, L.; Chen, R.; Wu, Y. Determination of eight pesticides in Lycium barbarum by LC-MS/MS and dietary risk assessment. Food Chem. 2017, 218, 192–8.
  • 28. Lambropoulou, D. A.; Albanis, T. A. Liquid-phase micro-extraction techniques in pesticide residue analysis. J. Biochem. Biophys. Methods 2007, 70(2), 195–228.
  • 29. Kruve, A.; Leito, I. Comparison of different methods aiming to account for/overcome matrix effects in LC/ESI/MS on the ex ample of pesticide analyses. Anal. Methods 2013, 5(12), 3035–44.
  • 30. Walorczyk, S. Validation and use of a QuEChERS-based gas chromatographic–tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 2014, 120, 106–13.
  • 31. Rahman, M. M.; Abd El-Aty, A. M.; Choi, J. H.; Kim, S. W.; Shin, S. C.; Shim, J. H. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea Turing tandem mass spectrometry analysis. Food Chem. 2015, 168, 445–53.
  • 32. Rimayi, C.; Odusanya, D.; Mtunzi, F.; Tsoka, S. Alternative calibration techniques for counteracting the matrix effects in GC–MSSPE pesticide residue analysis–A statistical approach. Chemosphere 2015, 118, 35–43.
  • 33. Stahnke, H.; Kittlaus, S.; Kempe, G.; Hemmerling, C.; Alder, L. The influence of electrospray ion source design on matrix effects. J. Mass. Spectrom. 2012, 47(7), 875–84.
  • 34. EU-MRL-Database. http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/?event5pesticide.residue.CurrentMRL&language5EN (Accessed on January 20, 2023).
  • 35. Wang, C.; Wang, Y.; Wang, R.; Yan, J.; Lv, Y.; Li, A.; Gao, J. Dissipation kinetics, residues and risk assessment of propiconazole and azoxystrobin in ginseng and soil. Int. J. Environ. Anal Chem. 2017, 97(1), 1–13.
  • 36. Guo, C.; Li, J. Z.; Guo, B. Y.; Wang, H. L. Determination and safety evaluation of difenoconazole residues in apples and soils. Bull. Environ. Contamtoxicol. 2010, 85(4), 427–31.
  • 37. Aly, S. A. Biochemical effects of the fungicides cyflufenamid and difenoconazole residues on pea fruits. Egypt J. Biol. Pest Control. 2017, 3(2), 38–44.
  • 38. MacLachlan, D. J.; Hamilton, D. A review of the effect of different application rates on pesticide residue levels in supervised residua trials. Pest ManagSci 2011, 67(6), 609–15.
  • 39. Abdallah, O.; Abdel Ghani, S.; Hrouzková, S. Development of validated LC-MS/MS method for imidacloprid and acetamiprid in parsley and rocket and evaluation of their dissipation dynamics. J. Liqchromatogrrelattechnol 2017, 40(8), 392–9.
  • 40. Abdallah, O. I.; El Agamy, M.; Abdelraheem, E.; Malhat, F. Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant. Biomed. Chromatogr. 2019, 33(6), e4492.
  • 41. Abdallah, O. I.; El-Hamid, R. M. A.; Raheem, E. H. A. Clothianidin residues in green bean, pepper and watermelon crops and diet ary exposure evaluation based on dispersive liquid-liquid microextraction and LC–MS/MS. JCF 2019, 14(3), 293–300.
  • 42. Abd-Alrahman, S. H.; Osama, I. Dissipation rate of different commercial formulations of malathion applied to tomatoes. Afr. J. Agric. Res. 2012, 7(38), 332–5335.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51fe12ef-712e-4812-9649-76814de0cb3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.