Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article explores the impact of various factors on the determination of gas bubble equivalent diameters using optical shadowgraphy. The experimental setup involves a liquid-gas system. The results indicate that the distance between the camera and the bubble rise-up plane has negligible influence on measurement precision as long as the area captured is constant. Increasing the number of analyzed frames significantly reduces uncertainties, while higher image magnification leads to increased uncertainties due to a reduced number of frames and smaller area captured. Image distortion correction minimally affects results and precision. The study concludes that factors such as resolution, frame rate, and elongated flow path captured contribute to more accurate determination of equivalent bubble diameters, essential for the determination of mass and heat transfer coefficients in liquid-gas flows. The results indicate that a sufficiently high number of video frames may be more important than indiscriminately increasing the resolution.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
72--80
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland
Bibliografia
- 1. Besagni, G., Gallazzini, L. & Inzoli, F. (2021). Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases. Chem. Eng. Sci. 176, 116–126. DOI: 10.1016/j.ces.2017.10.036.
- 2. Hasan, M.N., Khan, A.A., Ahmad, S. & Lew, B. (2019). Anaerobic and aerobic sewage treatment plants in Northern India: Two years intensive evaluation and perspectives. Environ. Technol. Innov. 15, 100396. DOI: 10.1016/j.eti.2019.100396.
- 3. Luty, P. & Prończuk, M. (2020). Determination of a bubble drag coefficient during the formation of single gas bubble in upward coflowing liquid. Processes, 8, 8, 999. DOI: 10.3390/pr8080999.
- 4. Li, H. & Prakash, A. (2002). Analysis of flow patterns in bubble and slurry bubble columns based on local heat transfer measurements. Chem. Eng. J. 86, 3, 269–276. DOI: 10.1016/S1385-8947(01)00186-3.
- 5. Takayama, S. & Akita M. (2008). Bioengineering aspects of bioreactor application in plant propagation. Plant tissue culture engineering. (pp. 83–100). Dordrecht, Springer. DOI: 10.1007/978-1-4020-3694-1_5.
- 6. Xiaoping, G. & Ning, Y. (2017). Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime. Chem. Eng. Res. Des. 127, 103–112. DOI: 10.1016/j.cherd.2017.09.017.
- 7. Kulkarni, A.A. & Joshi, J.B. (2005). Bubble formation and bubble rise velocity in gas− liquid systems: a review. Ind. Eng. Chem. Res. 44, 16, 5873–5931. DOI: 10.1021/ie049131p.
- 8. Shi, S., Wang, D., Qian, Y., Sun, X., Liu, Y. & Tentner, A. (2020). Liquid-phase turbulence measurements in air-water two-phase flows using particle image velocimetry. Prog. Nuc. Energ. 124, 103334. DOI: 10.1016/j.pnucene.2020.103334.
- 9. Di Nunno, F., Granata, F., Miozzi, M., Gargano, R., de Marinis, G., Alves Pereira, F. & Di Felice, F. (2021). Experimental study of three in-line bubbles rising in still water by means of a three-dimensional (3D) shadowgraphy technique. J. Phys. Conf. Ser. 1977, 1, 012002. DOI: 10.1088/1742-6596/1977/1/012002.
- 10. Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Were-ley, S.T. & Kompenhans, J. (2018). Particle image velocimetry: a practical guide (3rd ed.). Springer. DOI: 10.1007/978-3-319-68852-7.
- 11. Di Nunno, F., Alves Pereira, F., Miozzi, M., Granata, F., Gargano, R., de Marinis, G. & Di Felice, F. (2020). Experimental study of a vertical plunging jet by means of a volumetric shadowgraph technique. J. Phys. Conf. Ser. 1589, 012006. DOI: 10.1088/1742-6596/1589/1/012006.
- 12. Zhou, X., Sun, X. & Liu, Y. (2016). Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions. Nucl. Eng. Des. 310, 534–543. DOI: 10.1016/j.nucengdes.2016.10.048.
- 13. Nishino, K., Kato, H. & Torii, K. (2000). Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow. Meas. Sci. Technol. 11, 6, 633–645. DOI: 10.1088/0957-0233/11/6/306.
- 14. Zaruba, A., Krepper, E., Prasser, H.M. & Vanga, B.R. (2005). Experimental study on bubble motion in a rectangular bubble column using high-speed video observations. Flow Meas. Instrum., 16, 277–287. DOI: 10.1016/j.flowmeasinst.2005.03.009.
- 15. Butler, C., Cid, E. & Billet, A.-M. (2016). Modelling of mass transfer in Taylor flow: Investigation with the PLIFI technique. Chem. Eng. Res. Des. 115, Part B, 292–302. DOI: 10.1016/j.cherd.2016.09.001.
- 16. Sathe, M.J., Thaker, I.H., Strand, T.E. & Joshi, J.B. (2010). Advanced PIV/LIF and shadowgraphy system to visualize flow structure in two-phase bubbly flows. Chem. Eng. Sci. 65, 8, 2431–2442. DOI: 10.1016/j.ces.2009.11.014.
- 17. Emberson, D.R., Ihracska, B., Imran, S. & Diez, A. (2016). Optical characterization of Diesel and water emulsion fuel injection sprays using shadowgraphy. Fuel, 172, 253–262. DOI: 10.1016/j.fuel.2016.01.015.
- 18. Nguyen, T.T., Kikura, H., Murakawa, H. & Tsuzuki, N. (2015). Measurement of Bubbly Two-phase Flow in Vertical Pipe Using Multiwave Ultrasonic Pulsed Dopller Method and Wire Mesh Tomography. Enrgy. Proced., 71, 337–351. DOI: 10.1016/j.egypro.2014.11.887.
- 19. Rueda Villegas, L., Colombet, D., Guiraud, P., Legendre, D., Cazin, S. & Cockx, A. (2019). Image processing for the experimental investigation of dense dispersed flows: Application to bubbly flows. Int. J. Multiphas. Flow, 111, 16–30. DOI: 10.1016/j.ijmultiphaseflow.2018.10.017.
- 20. Tompkins, C., Prasser, H.M. & Corradini, M. (2018). Wire-mesh sensors: A review of methods and uncertainty in multiphase flows relative to other measurement techniques Wire-mesh sensors: A review of methods and uncertainty in multiphase flows relative to other measurement techniques. Nucl. Eng. Des. 337, 205–220. DOI: 10.1016/j.nucengdes.2018.06.005.
- 21. Murakawa, H., Shimizu, T. & Eckert, S. (2021). Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section. Measurement, 182, 109654. DOI: 10.1016/j.measurement.2021.109654.
- 22. Lucas, G.P. & Mishra, R. (2005). Measurement of bubble velocity components in a swirling gas–liquid pipe flow using a local four-sensor conductance probe. Meas. Sci. Technol., 16, 749–758. DOI: 10.1088/0957-0233/16/3/018.
- 23. Luty, P., Prończuk, M. & Bizon, K. (2022). Experimental verification of different approaches for the determination of gas bubble equivalent diameter from optical imaging. Chem. Eng. Res. Des. 185, 210–222. DOI: 10.1016/j.cherd.2022.07.008.
- 24. Wichterle, K., Večeř, M. & Růžička, M. (2014). Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?. Chem. Pap. 68, 1, 74–79. DOI: 10.2478/s11696-013-0406-9.
- 25. Canny, J. (1986). A computational approach to edge detection, IEEE T. Pattern Anal., PAMI-8, 6, 679–698. DOI: 10.1109/TPAMI.1986.4767851.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51fd2e16-bcb4-4577-a9f2-a34b67365e4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.