Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
While performing physiological functions, muscles modify their intrinsic characteristics. As has already successfully done in various clinical fields, the technique of electrical impedance spectroscopy (EIS) measurement can be applied in order to study tissue changes. The aim of this study was to study changes in the electrical properties of muscular tissues due to an isometric contraction and successive relaxation. For this work, the electrodes lay out and trials protocol were carefully designed, also according to studies concerning muscle fatigue. A device previously tested and employed for in vivo EIS measurements was used. Impedance measurements were carried out on the forearm flexor muscles in a group of sixteen healthy adult subjects. In order to have a quantitative index of spectral impedance variation, the relative variation of the area under curve of Nyquist plots was computed to study the different muscle states under consideration (rest, contraction and 4 min after contraction). The index introduced showed itself to be sensitive to different muscular conditions. Results from healthy subjects showed statistically significant differences in the impedance data in the various muscle conditions under examination.
Wydawca
Czasopismo
Rocznik
Tom
Strony
4--9
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Istituto di Ingegneria Biomedica, Consiglio Nazionale delle Ricerche (IsIB-CNR), Roma, Italy
autor
- DIETI, Università degli Studi di Napoli "Federico II", Napoli, Italy; Interuniversity Centre for Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Roma, Italy
autor
- DIETI, Università degli Studi di Napoli "Federico II", Napoli, Italy; Interuniversity Centre for Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Roma, Italy
autor
- DIETI, Università degli Studi di Napoli "Federico II", Napoli, Italy; Interuniversity Centre for Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Roma, Italy
Bibliografia
- [1] Stålhand J, Klarbring A, Holzapfel GA. Smooth muscle contraction: a mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol 2008; 96: 465–81.
- [2] Rutkove S. Electrical impedance myography: background, current state, and future directions. Muscle Nerve 2009; 40 (6): 936–46.
- [3] Shiffman CA, Aaron R, Rutkove S. Electrical impedance of muscle during isometric contraction. Physiol Meas 2003; 24 (1): 213–34.
- [4] Jossinet J, Trillaud C, Chesnais S. Impedance changes in liver tissue exposed in vitro to high-energy ultrasound. Physiol Meas 2005; 26(2): S49–58.
- [5] Cesarelli M, Fratini A, Bifulco P, La Gatta A, Romano M, Pasquariello G. Analysis and modelling of muscles motion during whole body vibration. EURASIP J Adv Signal Process 2010; 2010: 1–9.
- [6] Merletti R, Parker P. Electromyography. Physiology, Engineering, and Noninvasive Applications. In: IEEE Press Engineering in Medicine and Biology Society. A John Wiley & Sons, Inc.; 2004. Publication chapters 1, 4, 9; 1–26, 81–106, 233–258.
- [7] Valentinuzzi ME. Bioelectrical Impedance Techniques in Medicine, Part I: Bioimpedance Measurement. First section: general concepts. Crit Rev Biomed Eng 1996; 24(4–6): 223–55.
- [8] Kun S, Peura RA. Tissue ischemia detection using impedance spectroscopy. In: Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1994. p. 868–9.
- [9] Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging 2002; 21: 638–45.
- [10] Beetner DG, Kapoor S, Manjunath S, Zhou X, Stoecker WV. Differentiation among basal cell carcinoma, benign lesions and normal skin using electric impedance. IEEE Trans Biomed Eng 2003; 50: 1020–4.
- [11] Clemente F, Costa M, Monini S, Barbara M. Monitoring of fixture osteointegration after BAHA implantation. Audiol Neurootol 2010; 16(3): 158–63.
- [12] Zagar T, Krizaj D. Multivariate analysis of electrical impedance spectra for relaxed and contracted skeletal muscle. Physiol Meas 2008; 29(6): S365–72.
- [13] Guimerà A, Calderón E, Los P, Christie AM. Method and device for bio-impedance measurement with hard-tissue applications. Physiol Meas 2008; 29: S279–90.
- [14] Rigaud B, Morucci JP, Chauveau N. Bioelectrical impedance techniques in biomedicine. Part I: Bioimpedance Measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 1996; 24(4–6): 257–351.
- [15] Arpaia P, Clemente F, Romanucci C. An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement. Measurement 2008;41 (9): 1040–4.
- [16] Clemente F, Cesarelli M, Bifulco P. Electrical impedance spectral measurements of muscular tissue in different physiological condition. In: IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA); Budapest 2012. p. 1–4.
- [17] Arpaia P, Clemente F, Romanucci C. In-vivo test procedure and instrument characterization for EIS-based diagnosis of prosthesis osseointegration. In: Proceedings of IEEE IMTC; Warsaw 2007. p. 1–6.
- [18] Macdonald JR, Barsoukov E. Impedance spectroscopy: theory, experiment and application, 2nd ed., Hoboken, NJ: Wiley-Interscience; 2005.
- [19] Ramos PM, Janeiroa FM, Radila T. Comparison of impedance measurements in a DSP using ellipse-fit and seven-parameter sine-fit algorithms. Measurement 2009;42(9): 1370–9.
- [20] Schawn HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 1957;5: 147–209.
- [21] Gregory WD, Marx JJ, Gregory CW, Mikkelson WM, Tjoe JA, Shell J. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Med Phys 2012; 39(7): 4167–74.
- [22] Songer E, Luckoor S, Kun S. Selection of optimal electrodes for clinical impedance spectroscopic measurement. J Clin Eng 2001; 26: 190–9.
- [23] Cesarelli M, Clemente F, Bracale M. A flexible FFT algorithm for processing biomedical signals using a personal computer. J Biomed Eng 1990; XXII: 527–30.
- [24] Basmajian JV, De Luca CJ. Muscle fatigue and time-dependent parameters of the surface EMG signal. Muscles Alive, 5th ed., Williams & Wilkins; 1985: 201–22 [chapter 8].
- [25] Rutkove S. Electrical impedance myography as a biomarker for ALS. Lancet Neurol 2009; 8(3): 226–7.
- [26] Tarulli AW, Garmirian LP, Fogerson PM, Rutkove S. Localized muscle impedance abnormalities in amyotrophic lateral sclerosis. J Clin Neuromuscul Dis 2009; 10(3): 90–6.
- [27] Yoon K, Lee KV, Kim SB, Han TR, Jung DK, Roh MS, Lee JH. Electrical impedance spectroscopy and diagnosis of tendinitis. Physiol Meas 2008; 31(2): 171–82.
- [28] Palko T, Galwas B. Electrical properties of biological tissues, their measurements and biomedical applications. Automedica 1999; 7: 343–65.
- [29] Arpaia P, Clemente F, Zanesco A. Low-invasive diagnosis of metallic prosthesis osseointegration by electrical impedance spectroscopy. IEEE Trans Instrum Meas 2007; 56(3): 784–9.
- [30] Clemente F, De Lazzari C, Darowski M, Ferrari G, Mimmo R, Guaragno M, Tosti G. Study of systolic pressure variation (SPV) in presence of mechanical ventilation. Int J Artif Organs 2002; 25(4): 313–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f90fe1-230a-47d8-b10f-e94ab4326d31