PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Focus shaping of the radially polarized Bessel–Gauss beam with a sine-azimuthal variation wavefront

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Focusing properties of the radially polarized Bessel–Gauss beam with a sine-azimuthal variation wavefront was investigated by the vector diffraction theory. The wavefront distribution is the sine function of the azimuthal angle with one phase parameter that indicates the phase change frequency. Results show that the focal pattern can be altered by the phase parameter, and many novel focal patterns may occur, such as multiple dark-foci focal pattern, crescent shape, and wheel shape. For case of a higher phase beam, the whole focal pattern turns on a symmetric wheel shape with multiple reduplicate intensity elements. When the phase parameter is an odd number, the number of reduplicate elements equals the phase parameter, while when the phase parameter is an even number, the number of reduplicate elements is two times the phase parameter. In addition, the effect of the phase parameter on the focal pattern is more considerable than that of the beam parameter under low numerical aperture. Under higher numerical aperture, the effect of the beam parameter on the focal pattern gets stronger.
Czasopismo
Rocznik
Strony
567--582
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China
  • Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China
autor
  • Laboratory of Nanophotonic Functional Materials and Devices Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China
autor
  • Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China
autor
  • Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China
Bibliografia
  • [1] DURNIN J., Exact solution for nondiffracting beams. I. The scalar theory, Journal of the Optical Society of America A 4(4),1987, pp. 651–654.
  • [2] BOUCHAL Z., OLIVIK M., Non-diffractive vector Bessel beams, Journal of Modern Optics 42(8), 1995, pp. 1555–1566.
  • [3] GARCÉS-CHÁVEZ V., MCGLOIN D., MELVILLE H., SIBBETT W., DHOLAKIA K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature 419, 2002, pp. 145–147.
  • [4] JARUTIS V., MATIJOŠIUS A., DI TRAPANI P., PISKARSKAS A., Spiraling zero-order Bessel beam, Optics Letters 34(14), 2009, pp. 2129–2131.
  • [5] VYSA S., KOZAWA Y., SATO S., Self-healing of tightly focused scalar and vector Bessel–Gauss beams at the focal plane, Journal of the Optical Society of America A 28(5), 2011, pp. 837–843.
  • [6] GORI F., GUATTARI G., PADOVANI C., Bessel–Gauss beams, Optics Communications 64(6), 1987, pp. 491–495.
  • [7] SESHADRI S.R., Virtual source for the Bessel–Gauss beam, Optics Letters 27(12), 2002, pp. 998–1000.
  • [8] APRIL A., Bessel–Gauss beams as rigorous solutions of the Helmholtz equation, Journal of the Optical Society of America A 28(10), 2011, pp. 2100–2107.
  • [9] BAGINI V., FREZZA F., SANTARSIERO M., SCHETTINI G., SCHIRRIPA SPAGNOLO G., Generalized Bessel––Gauss beams, Journal of Modern Optics 43(6), 1996, pp. 1155–1166.
  • [10] JORDAN R.H., HALL D.G., Free-space azimuthal paraxial wave equation: the azimuthal Bessel––Gauss beam solution, Optics Letters 19(7), 1994, pp. 427–429.
  • [11] GREENE P.L., HALL D.G., Diffraction characteristics of the azimuthal Bessel–Gauss beam, Journal of the Optical Society of America A 13(5), 1996, pp. 962–966.
  • [12] CHEN J., YU Y., The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective, Optics Communications 283(9), 2010, pp. 1655–1660.
  • [13] ITO A., KOZAWA Y., SATO S., Generation of hollow scalar and vector beams using a spot-defect mirror, Journal of the Optical Society of America A 27(9), 2010, pp. 2072–2077.
  • [14] WANG H., SHI L., LUKYANCHUK B., SHEPPARD C., CHONG C.T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2(8), 2008, pp. 501–505.
  • [15] HUANG K., SHI P., KANG X.L., ZHANG X., LI Y.P., Design of DOE for generating a needle of a strong longitudinally polarized field, Optics Letters 35(7), 2010, pp. 965–967.
  • [16] YEW E.Y.S., SHEPPARD C.J.R., Tight focusing of radially polarized Gaussian and Bessel–Gauss beams, Optics Letters 32(23), 2007, pp. 3417–3419.
  • [17] HUANG K., SHI P., CAO G.W., LI K., ZHANG X.B., LI Y.P., Vector-vortex Bessel–Gauss beams and their tightly focusing properties, Optics Letters 36(6), 2011, pp. 888–890.
  • [18] LEDESMA S., CAMPOS J., ESCALERA J.C., YZUEL M.J., Symmetry properties with pupil phase-filter, Optics Express 12(11), 2004, pp. 2548–2559.
  • [19] WANG H., GAN F., High focal depth with a pure-phase apodizer, Applied Optics 40(31), 2001, pp. 5658–5662.
  • [20] DE JUANA D.M., CANALES V.F., VALLE P.J., CAGIGAL M.P., Focusing properties of annular binary phase filters, Optics Communications 229(1–6), 2004, pp. 71–77.
  • [21] CANALES V.F., OTI J.E., CAGIGAL M.P., Three-dimensional control of the focal light intensity distribution by analytically designed phase masks, Optics Communications 247(1–3), 2005, pp. 11–18.
  • [22] GAO X., GAN F., XU W., Superresolution by three-zone pure phase plate with 0, π, 0 phase variation, Optics and Laser Technology 39(5), 2007, pp. 1074–1080.
  • [23] SATO S., KOZAWA Y., Hollow vortex beams, Journal of the Optical Society of America A 26(1), 2009, pp. 142–146.
  • [24] YOUNGWORTH K.S., BROWN T.G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express 7(2), 2000, pp. 77–87.
  • [25] VISSCHER K., BRAKENHOFF G.J., Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik 89, 1992, pp. 174–180.
  • [26] MOSHE I., JACKEL S., MEIR A., Production of radially or azimuthally polarized beams in solid-state nce effects, Optics Letters 28(10), 2003, pp. 807–809.
  • [27] BISSON J.-F., LI J., UEDA K., SENATSKY YU., Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon, Optics Express 14(8), 2006, pp. 3304–3311.
  • [28] YONEZAWA K., KOZAWA Y., SATO S., Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal, Optics Letters 31(14), 2006, pp. 2151–2153.
  • [29] AHMED M.A, HAEFNER M., VOGEL M., PRUSS C., VOSS A., OSTEN W., GRAF T., High-power radially polarized Yb:YAG thin-disk laser with high efficiency, Optics Express 19(6), 2011, pp. 5093–5103.
  • [30] NODA S., YOKOYAMA M., IMADA M., CHUTINAN A., MOCHIZUKI M., Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293(5532), 2001, pp. 1123–1125.
  • [31] IWAHASHI S., KUROSAKA Y., SAKAI K., KITAMURA K., TAKAYAMA N., NODA S., Higher-order vector beams produced by photonic-crystal laser, Optics Express 19(13), 2011, pp. 11963–11968.
  • [32] ZHAN Q., LEGER J.R., Microellipsometer with radial symmetry, Applied Optics 41(22), 2002, pp. 4630–4637.582 XIUMIN GAO et al.
  • [33] ZHAN Q., LEGER J.R., Interferometric measurement of the geometric phase in space-variant polarization manipulations, Optics Communications 213(4–6), 2002, pp. 241–245.
  • [34] STALDER M., SCHADT M., Linearly polarized light with axial symmetry generated by liquid crystal polarization converters, Optics Letters 21(23), 1996, pp. 1948–1950.
  • [35] NIU C.-H., GU B.-Y., DONG B.-Z., ZHANG Y., A new method for generating axially-symmetric and radially-polarized beams, Journal of Physics D: Applied Physics 38(6), 2005, pp. 827–832.
  • [36] TIDWELL S.C., KIM G.H., KIMURA W.D., Efficient radially polarized laser beam generation with a double interferometer, Applied Optics 32(27), 1993, pp. 5222–5229.
  • [37] PASSILLY N., DE SAINT DENIS R., AIT-AMEUR K., TREUSSART F., HIERLE R., ROCH J.-F., Simple interferometric technique for generation of a radially polarized light beam, Journal of the Optical Society of America A 22(5), 2005, pp. 984–991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f869c1-b01d-4ae1-beac-3d2158d3ce7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.