PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Discrete-time output observers for boundary control systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper studies the output observer design problem for a linear infinite-dimensional control plant modelled as an abstract boundary input/output control system. It is known that such models lead to an equivalent state space description with unbounded control (input) and observation (output) operators. For this class of infinite-dimensional systems we use the Cayley transform to approximate the sophisticated infinite-dimensional continuous-time model by a discrete-time infinite-dimensional one with all involved operators bounded. This significantly simplifies mathematical aspects of the observer design procedure. As is well known, the essential feature of the Cayley transform is that it preserves various system theoretic properties of the control system model, which may be useful in analysis. As an illustration, we consider an example of designing an output observer for the one-dimensional heat equation with measured controls (inputs) in the Neumann boundary conditions, measured outputs in the Dirichlet boundary conditions and an unmeasured output at a fixed point within the domain. Numerical simulations of this example show that the interpolated continuous-time signal, obtained from the discrete-time observer, can be successfully used for tracking the continuous-time plant output.
Rocznik
Strony
613--626
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Department of Automatic Control and Robotics, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland
Bibliografia
  • [1] Bartecki, K. (2020). Approximate state-space and transfer function models for 2×2 linear hyperbolic systems with collocated boundary inputs, International Journal of Applied Mathematics and Computer Science 30(3): 475–491, DOI: 10.34768/amcs-2020-0035.
  • [2] Cheng, A. and Morris, K. (2003). Well-posedness of boundary control systems, SIAM Journal on Control and Optimization 42(4): 1244–1265.
  • [3] Curtain, R. and Oostveen, J. (1997). Bilinear transformations between discrete-time and continuous-time infinite-dimensional systems, Proceedings of the International Conference on Methods and Models in Automation and Robotics, MMAR 1997, Międzyzdroje, Poland, pp. 861–870.
  • [4] Curtain, R. and Zwart, H. (2020). Introduction to Infinite-Dimensional Systems Theory: A State-Space Approach, Springer, New York.
  • [5] Demetriou, M. (2013). Disturbance-decoupling observers for a class of second order distributed parameter systems, Proceedings of the 2013 American Control Conference, ACC 2013, Washington, USA, pp. 1302–1307.
  • [6] Demetriou, M. and Rosen, I. (2005). Unknown input observers for a class of distributed parameter systems, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC/ECC 2005, Seville, Spain, pp. 3874–3879.
  • [7] Dubljevic, S. and Humaloja, J.-P. (2020). Model predictive control for regular linear systems, Automatica 119(6): 1–9, DOI:10.1016/j.automatica.2020.109066.
  • [8] Emirsajłow, Z. (2012). Infinite-dimensional Sylvester equations: Basic theory and applications to observer design, International Journal of Applied Mathematics and Computer Scienes 22(2): 245–257, DOI: 10.2478/v10006-012-0018-5.
  • [9] Emirsajłow, Z. (2020). Boundary observers for boundary control systems, in A. Bartoszewicz et al. (Eds), Advanced, Contemporary Control, Springer, Cham, pp. 92–104.
  • [10] Emirsajłow, Z. (2021). Output observers for linear infinite-dimensional control systems, in P. Kulczycki et al. (Eds), Automatic Control, Robotics and Information Processing, Springer, Cham, pp. 67–92.
  • [11] Emirsajłow, Z. and Townley, S. (2000). From PDEs with boundary control to the abstract state equation with an unbounded input operator: Tutorial, European Journal of Control 7(1): 1–23.
  • [12] Ferrante, F., Cristofaro, A. and Prieur, C. (2020). Boundary observer design for cascaded ODE–hyperbolic PDE systems: A matrix inequalities approach, Automatica 119: 1–9, DOI: 10.1016/j.automatica.2020.109027.
  • [13] Grabowski, P. (2021). Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems, International Journal of Applied Mathematics and Computer Science 31(2): 195–218, DOI: 10.34768/amcs-2021-0014.
  • [14] Guo, B. and Zwart, H. (2006). On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform, Integral Equations and Operator Theory 54(3): 349–383.
  • [15] Hasana, A., Aamoa, O. and Krstic, M. (2016). Boundary observer design for hyperbolic PDE–ODE cascade systems, Automatica 68: 75–86, DOI: 10.1016/j.automatica.2016.01.058.
  • [16] Havu, V. and Malinen, J. (2007). The Cayley transform as a time discretization scheme, Integral Equations and Operator Theory 28(7): 825–851.
  • [17] Hidayat, Z., Babuska, R., De Schutter, B. and Nunez, A. (2011). Observers for linear distributed-parameter systems: A survey, Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments, Montreal, Canada, pp. 166–171.
  • [18] Huang, J., Liu, A. and Chen, A. (2016). Spectra of 2×2 upper triangular operator matrices, Filomat 30(13): 3587–3599, DOI: 10.2298/FIL1613587H.
  • [19] Kythe, P. (2011). Green Functions and Linear Differential Equations, Theory, Applications and Computations, Chapman & Hall/CRC, Boca Raton.
  • [20] Mitkowski, W., Bauer, W. and Zagórowska, M. (2017). Discrete-time feedback stabilization, Archives of Control Sciences 27(2): 309–322.
  • [21] Ober, R. and Montgomery-Smith, S. (1990). Bilnear transformation of infinite-dimensional state-space systems and balanced realizations of nonrational transfer functions, SIAM Journal on Control and Optimization 28(2): 438–465.
  • [22] Oprzędkiewicz, K. and Mitkowski, W. (2018). A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process, International Journal of Applied Mathematics and Computer Science 28(4): 649–659, DOI: 10.2478/amcs-2018-0050.
  • [23] Smyshlyaev, A. and Krstic, M. (2005). Backstepping observer for a class of parabolic PDEs, Systems and Control Letters 54(7): 613–625.
  • [24] Smyshlyaev, A. and Krstic, M. (2008). Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, Philadelphia.
  • [25] Trinh, H. and Fernando, T. (2012). Functional Observers for Dynamical Systems, Springer, Berlin.
  • [26] Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser, Basel.
  • [27] Vries, D., Keesman, K. and Zwart, H. (2010). Luenberger boundary observer synthesis for Sturm–Liouville systems, International Journal of Control 83(7): 1503–1514.
  • [28] Xie, J., Koch, C. and Dubljevic, S. (2021). Discrete-time model-based output regulation of fluid flow systems, European Journal of Control 57: 1–13, DOI: 10.1016/j.ejcon.2020.10.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f65cc3-7020-4c9e-8a1e-6d15ce342f7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.