PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview and evaluation of conceptual strategies for accessing CPU-dependent execution resources in grid infrastructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emergence of many-core and massively-parallel computational accelerators (e.g., GPGPUs) has led to user demand for such resources in grid infrastructures. A widely adopted approach for discovering and accessing such resources has, however, yet to emerge. GPGPUs are an example of a larger class of computational resources, characterized in part by dependence on an allocated CPU. This paper terms such resources “CPU-Dependent Execution Resources” (CDERs). Five conceptual strategies for discovering and accessing CDERs are described and evaluated against key criteria, and all five strategies are compliant with GLUE 1.3, GLUE 2.0, or both. From this evaluation, two of the presented strategies clearly emerge as providing the greatest flexibility for publishing both static and dynamic CDER information and identifying CDERs that satisfy specific job requirements. Furthermore, a two-phase approach to job-submission is proposed for those jobs requiring access to CDERs. The approach is compatible with existing grid services. Examples are provided to illustrate job submission under each strategy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
373--393
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • School of Computer Science and Statistics, Trinity College Dublin
autor
  • School of Computer Science and Statistics, Trinity College Dublin
  • School of Computer Science and Statistics, Trinity College Dublin
autor
  • School of Computer Science and Statistics, Trinity College Dublin
Bibliografia
  • [1] Anderson D.P.: BOINC: A System for Public-Resource Computing and Storage. In: 5th International Workshop on Grid Computing (GRID 2004), 8 November 2004, Pittsburgh, PA, USA, Proceedings , R. Buyya, ed., pp. 4–10. IEEE Computer Society, 2004. http://doi.ieeecomputersociety.org/10.1109/GRID. 2004.14 .
  • [2] Bird I.: Computing for the Large Hadron Collider. Annual Review of Nuclear and Particle Science , vol. 61(1), pp. 99–118. http://dx.doi.org/10.1146/annurev- nucl-102010-130059 .
  • [3] Burke S., Campana S., Lanciotti E., Litmaath M., Lorenzo P.M., Miccio V., Nater C., Santinelli R., Sciaba A.: The gLite 3.2 User Guide. https://edms. cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf , 2012.
  • [4] Burke S., Field L., Horat D.: Migration to the GLUE 2.0 information schema in the LCG/EGEE/EGI production Grid. Journal of Physics: Conference Series , vol. 331(6), p. 062004, 2011. http://stacks.iop.org/1742-6596/331/i=6/a= 062004 .
  • [5] Cooke A.W., Gray A.J.G., Ma L., Nutt W., Magowan J., Oevers M., Taylor P., Byrom R., Field L., Hicks S., Leake J., Soni M., Wilson A.J., Cordenonsi R., Cornwall L., Djaoui A., Fisher S., Podhorszki N., Coghlan B.A., Kenny S., O’Callaghan D.: R-GMA: An Information Integration System for Grid Monitoring. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE – OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3–7, 2003 , Lecture Notes in Computer Science , R. Meersman, Z. Tari, D.C. Schmidt, eds, vol. 2888, pp. 462– 481. Springer, 2003. http://dx.doi.org/10.1007/978-3-540-39964-3_29 .
  • [6] David M., Borges G., Gomes J., Pina J.M., Plasencia I.C., Fern ́andez-del- Castillo E., L ́opez ́ A., Orviz P., Cacheiro J.L., Fern ́andez C., Sim ́on ́ A.: Software Provision Process for EGI. Computing and Informatics , vol. 31(1), pp. 135–148, 2012. http://www.cai.sk/ojs/index.php/cai/article/view/892 .
  • [7] Fern ́andez-del-Castillo E., Walsh J., Simon A.: Parallel Computing Workshop. In: Proceedings of the EGI Community Forum 2012/EMI Second Technical Conference . Proceedings of Science, Munich, Germany, 2012. http://pos.sissa. it/archive/conferences/162/057/EGICF12-EMITC2_057.pdf .
  • [8] Fuller S., Millet L., eds.: The Future of Computing Performance: Game Over or Next Level? The National Academies Press, Washington, DC, 2011. http://www.nap.edu/catalog/12980/the-future-of-computing- performance-game-over-or-next-level .
  • [9] Germain-Renaud C., Loomis C., Moscicki J.T., Texier R.: Scheduling for Responsive Grids. Journal of Grid Computing , vol. 6(1), pp. 15–27, 2008. http://dx.doi.org/10.1007/s10723-007-9086-4 .
  • [10] Kenny S., Coghlan B.A.: Towards a Grid-wide Intrusion Detection System. In: Advances in Grid Computing - EGC 2005, European Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected Papers , P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, M. Bubak, eds, Lecture Notes in Computer Science , vol. 3470, pp. 275–284. Springer, 2005. http://dx.doi.org/10.1007/11508380_29
  • [11] Newhouse S.: EGI-InSPIRE paper. http://go.egi.eu/pdnon , 2010.
  • [12] OGF GLUE 1.3 Specification. https://redmine.ogf.org/dmsf_files/61?download= .
  • [13] OGF GLUE 2.0 Specification. http://redmine.ogf.org/dmsf/glue-wg?folder_id=18 .
  • [14] Raman R., Livny M., Solomon M.H.: Matchmaking: Distributed Resource Management for High Throughput Computing. In: Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, HPDC ’98, Chicago, Illinois, USA, July 28–31, 1998 , pp. 140–146. IEEE Computer Society, 1998. http://dx.doi.org/10.1109/HPDC.1998.709966 .
  • [15] Smirnova O., Ellert M., Johansson D.: ARIS and EGIIS: Installation, Configuration and Usage Manual. http://www.nordugrid.org/documents/aris-egiis. pdf
  • [16] The EGI MPI Users Guide. https://wiki.egi.eu/wiki/MPI_User_Guide
  • [17] Top 500 Supercomputers Highlights – November 2014. http://www.top500.org/lists/2014/11/highlights/ .
  • [18] Toor S., Mohn B., Cameron D., Holmgren S.: Case-Study for Different Models of Resource Brokering in Grid Systems. http://www.it.uu.se/research/ reports/2010-009/2010-009-nc.pdf , 2010.
  • [19] User Manual for ARC 11.05 (client version 1.0.0) and above. http://www.nordugrid.org/documents/arc-ui.pdf , 2014.
  • [20] Vella F., Cefal ́a R.M., Costantini A., Gervasi O., Tanci C.: GPU Computing in EGI Environment Using a Cloud Approach. In: International Conference on Computational Science and Its Applications, ICCSA 2011, Santander, Spain, June 20–23, 2011 , A. Iglesias, B.O. Apduhan, O. Gervasi, D. Taniar, M.L. Gavrilova, eds, pp. 150–155. IEEE Computer Society, 2011. http://doi.ieeecomputersociety.org/10.1109/ICCSA.2011.61 .
  • [21] Walsh J., Coghlan B., Eigelis K., Sipos G.: Results from the EGI GPGPU Virtual Team’s User and Resource Centre Administrators Surveys. 2012. Crakow Grid Workshop 2012.
  • [22] Walsh J., Dukes J.: Supporting job-level secure access to GPGPU resources on existing grid infrastructures. In: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, September 7–10, 2014 , M. Ganzha, L.A. Maciaszek, M. Paprzycki, eds, pp. 781–790, 2014. http://dx.doi.org/10.15439/2014F337 .
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f44cac-b8ba-487e-96bc-94e6db577805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.