
John Walsh
Jonathan Dukes
Gabriele Pierantoni
Brian Coghlan

OVERVIEW AND EVALUATION
OF CONCEPTUAL STRATEGIES
FOR ACCESSING
CPU-DEPENDENT EXECUTION RESOURCES
IN GRID INFRASTRUCTURES

Abstract The emergence of many-core and massively-parallel computational accelerators

(e.g., GPGPUs) has led to user demand for such resources in grid infrastruc-

tures. A widely adopted approach for discovering and accessing such resources

has, however, yet to emerge. GPGPUs are an example of a larger class of

computational resources, characterized in part by dependence on an allocated

CPU. This paper terms such resources “CPU-Dependent Execution Resources”

(CDERs). Five conceptual strategies for discovering and accessing CDERs are

described and evaluated against key criteria, and all five strategies are com-

pliant with GLUE 1.3, GLUE 2.0, or both. From this evaluation, two of the

presented strategies clearly emerge as providing the greatest flexibility for pub-

lishing both static and dynamic CDER information and identifying CDERs

that satisfy specific job requirements. Furthermore, a two-phase approach to

job-submission is proposed for those jobs requiring access to CDERs. The ap-

proach is compatible with existing grid services. Examples are provided to

illustrate job submission under each strategy.

Keywords generic resources, accelerators, EGI, Grid Integration, GLUE Schema

Citation

2015/12/21; 22:05 str. 1/21

Computer Science • 16 (4) 2015 http://dx.doi.org/10.7494/csci.2015.16.4.373

Computer Science 16 (4) 2015: 373–393

373

http://journals.agh.edu.pl/csci/

1. Introduction

Since its conception, grid computing has focused on a “single program/single CPU”

execution model. For the past decade, however, the exponential growth of CPU

speed and processing power has plateaued [8] [17], and this has generated many ques-

tions about the future of computational-based scientific research using this single pro-

gram/single CPU approach. Support for CPU-based parallel execution frameworks

(such as OpenMP and MPI) has become commonplace in grid infrastructures [7].

The emergence of many-core and massively-parallel computational accelerators (e.g.,

GPGPUs) has, however, led to user demand for access to these resources in grid

infrastructures [21]. At present, the integration of these resources into Grids (such

as EGI) is ‘ad-hoc’ in nature, with no widely accepted mechanisms for discovery or

access.

The inflexible nature of current grid discovery and access mechanisms presents a

challenge to the integration of a diverse range of computational resources in existing

grid infrastructures. In this paper, a flexible, dynamic approach to the integration

of new (and yet-to-be-conceived) resources into existing grid infrastructures is pro-

posed. The computational resources considered are characterized by specific proper-

ties: (a) access to the resource requires a CPU and is provisioned by a specific request

to the Local Resource Management System (LRMS), (b) the resources are finite in

number (limited job slots), (c) the resource is bound to a specific machine (node),

and (d) the user perceives that they have exclusive access to the resource. A com-

putational resource with these characteristics is considered to be a CPU-Dependent

Execution Resource (CDER). This definition is intended to exclude applications or

software (these are already facilitated) but include hardware resources such as GPG-

PUs, FPGAs, and hardware accelerators or software that may be “node-locked” due

to licensing restrictions.

The proposed approach focuses on Grids that use the Open Grid Forum (OGF)

Grid Laboratory for a Uniform Environment (GLUE) standards to publish informa-

tion about the state of their resources and services. Although the GLUE standards

(and, in particular, GLUE 2.0) facilitate the publication of “extended” information

beyond the core specification, there is no standard practice for publishing information

relating to CDERs using the GLUE schema.

Several conceptual strategies for discovering and accessing CDERs are considered.

The strategies are evaluated against a set of criteria that capture, for example, whether

the strategy allows key information about a CDER (e.g., resource type, capacity, or

capability) to be gathered and published locally by the provider of the resource and

then discovered and utilized globally by both users and grid services.

The structure of the paper is as follows: Section 2 presents an overview of the

basics of grid computing. In particular, it focuses on Grids based on the Open Grid

Forum (OGF) GLUE information model; why this model is important for large-

scale computational-science; and why some CDER resources are likely to become in-

creasingly important as computational-sciences become more dependent on massively-

2015/12/21; 22:05 str. 2/21

374 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

parallel computing. Section 3 describes five conceptual strategies for discovering and

accessing CDERs. These strategies are evaluated against a number of criteria in Sec-

tion 4. Section 5 reviews related and similar work. Finally, Section 6 summarizes

the findings of this work and discusses future work addressing CDER integration into

grid environments.

2. Background

A Grid is a distributed collection of computational and storage resources where

(a) each resource is controlled and managed solely and independently by its owner

or resource-provider (for example, a University, research center, company, or private

individual) and (b) each resource-provider has some level of control over how the

resource is accessed and used. This definition is sufficiently general to include both

large-scale Grids, such as the European Grid Infrastructure (EGI1) and the Open

Science Grid (OSG2), as well as “compute-cycle” volunteer (donation) systems such

as BOINC [1]. However, the key differences that distinguish the EGI and OSG from

other types of Grids is that these are specialist Grids that use common standards

to provide interoperable security infrastructures (that help control access to the re-

sources) and use a common information model, the Grid Laboratory for a Uniform

Environment (GLUE), to describe the state of the resources on each Grid. Moreover,

the role of a common information model is paramount in aiding the grid users to

locate and select suitable resources according to their needs. An implementation of

an information model is called a Grid Information Service (GIS). In the context of a

Grid, these can simply be called the Information System. The ensemble of software

and services that Grids are built upon is called the Grid Middleware, or in this paper,

middleware. Different grid infrastructures can support different middlewares. For

example, the EGI can use the gLite, UNICORE, and ARC middlewares. These three

middlewares are collectively known as the Unified Middleware Distribution (UMD) [6].

The OSG uses the Globus3 middleware.

2.1. The OGF GLUE Schemas: conceptual and concrete models

There are currently two major versions of the GLUE specification in common use

by global grid infrastructures, such as the EGI, OSG, and LCG4. These are known

as the GLUE 1.3 [12] and GLUE 2.0 [13] Schemas. It is important to note that

these specifications define conceptual models, where the models show how entities

(resources, services, security policies, etc.) in a Grid relate to one another, and

which properties each resource should (mandatory) or may (non-mandatory) possess.

Furthermore, the conceptual model is independent of the concrete data-format used

1http://www.egi.eu
2http://www.opensciencegrid.org
3https://www.globus.org/
4http://wlcg.web.cern.ch/

2015/12/21; 22:05 str. 3/21

Overview and evaluation of conceptual strategies for accessing (...) 375

by specific technologies. Current concrete data-formats include the LDAP Schema,

XML Schema, SQL, and JSON.

The first GLUE specification (GLUE 1.0) grew out of a need for many early

grid infrastructures and middleware projects, such as DataTag, The European Data

Grid (EDG), iVDGL, LCG, and Globus, to converge on a consistent description of

globally distributed grid resources and services [4]. The Grids already conformed

to a common security model – the Globus Security Infrastructure (GSI) – but some

of the Grids published differing information to describe the available resources and

services. Convergence on a common resource specification would greatly improve

grid-interoperability – an objective that needed to be fulfilled in order to solve many

grand-challenge problems, such as confirming the existence of the Higgs boson [2].

The initial specification was proposed in September 2002; however, further speci-

fications followed in April 2003 (GLUE 1.1), February 2005 (GLUE 1.2), and October

2006 (GLUE 1.3) in order to solve numerous problems with the specification itself or

to enhance the specification. Each of these incremental changes were required to be

fully backward compatible. This restriction was deemed to be a major constraint, as

it limited the evolution of both the schema and the grid-middleware that used it [4].

It should be noted that each new revision of the GLUE schema requires changes

to each of the grid-middlewares. As these middlewares are intended to provide ro-

bust “production use” of the grid infrastructures, there must be an assurance that

disruptions to services are kept to a minimum. Consequently, changes to both the

schemas and middlewares need to be rigorously tested. This testing and deployment

process is both costly in effort and time-consuming. Furthermore, changes may also

affect grid users if they need to adapt existing applications. Despite the ratification

of GLUE 2.0 in 2009, it has yet to fully replace GLUE 1.3 as of late-2014. A major

motivation behind the evaluation of the conceptual strategies described in this work

is to identify the provisions that exist in GLUE schemas that would facilitate a more

flexible and dynamic approach to the integration of new resources, without requiring

changes to the schemas.

The GLUE is used to describe the conceptual model of grid “entities,” their key

properties, and their relationships with other entities (if any exist). The relationship

between entities often takes the form of a “child-parent” dependency. For instance, a

Grid is composed of a set of Sites (resource-providers); each Site may provide a set of

one or more services (computational, storage, security, grid job orchestration, etc.).

There may be several instances of these grid services; for example, a Site may have

several LRMS’s, each managing their own collections of homogeneous nodes (clusters)

that execute grid jobs. The nodes are further classified as belonging to one or more

sub-collections (queues), and these queues will have their own time and memory limits

and access polices. Furthermore, the LRMS may also implement a policy to ensure

that collections of grid users (Virtual Organisations) have guaranteed access to these

resources over a finite period of time (Fair Share Allocation).

Nodes in a cluster are considered to be homogeneous, in that properties such as

the CPU model, speed, and memory allocated to each node should be same. However,

2015/12/21; 22:05 str. 4/21

376 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

the practice is that the values chosen for publication are often baseline or average

representations – as nodes added into a cluster at a later stage may be more powerful.

The presentation of GLUE in a concrete format such as LDAP or XML is known

as a rendering. The GIS is a service that generates, stores, updates, and allows

querying of rendered GLUE data. Furthermore, the GIS is key to discovering re-

sources and enabling other grid services, such as the Workload Management System

(WMS), to orchestrate user jobs. One of the most-prevalent implementations of an

information system is called the Berkeley Database Information Index (BDII). Both

EGI and OSG use the BDII ([3], Sec. 3.3.5) Grid Information Service. This is an

implementation of a hierarchical grid information system model with three BDII types

and a set of Information Providers that generate information about the grid services,

their resources, and their security-access policies. Figure 1 illustrates the hierarchical

structure of the BDII. The Resource-BDII (lowest BDII level) aggregates the state of

a service node by executing a set of Generic Information Provider (GIP) plugins; the

Site-BDII accumulates data from all of the Resource-BDIIs belonging to the given

Site; and finally, the Top-level BDII aggregates all data coming from the set of Site-

BDIIs. Information is pulled from lower levels to higher levels. In this way, the state

of any grid service can be determined by querying the Top-Level BDII. EGI requires

that the BDII publishes both GLUE 1.3 and GLUE 2.0 formats using the LDAP Data

Interchange Format (LDIF).

Local

Domain

Information
Provider

Global

Other Grid
Resource
Centres

Local

Information
Provider

Figure 1. The Grid Information System. GLUE data is pulled from the lowest level (gener-

ated by Information Providers) up to the Global level.

2015/12/21; 22:05 str. 5/21

Overview and evaluation of conceptual strategies for accessing (...) 377

The representation of computing resources in the GLUE Schemas allows Sites

to publish information about the many high-level aspects of the Computing Service,

such as the LRMS that manages the allocation of nodes to grid jobs, how many CPU-

cores (or job slots) are available on each node (for multi-core applications), as well as

capacity and utilization details.

The developers of GLUE 1.3 note [12] that the full set of features and policies

for a given LRMS is much too complex to be represented in a reasonably compact

schema. Furthermore, because LRMS implementations have features that vary quali-

tatively, the schema definition is intended to capture the most-common configurations

among the supported LRMS’s. The same concerns and considerations also apply to

GLUE 2.0. An unintended consequence of this approach is that neither GLUE 1.3

nor GLUE 2.0 provide support for CDERs. This is because (i) CDERs are usually

implemented as a Generic Consumable Resource in the LRMS, and this was not sup-

ported in LRMS scheduling systems such as MAUI; and, (ii) the use of CDERs in

grid applications was not common.

2.2. Extending GLUE Entities

Both GLUE 1.3 and GLUE 2.0 schemas provide ways to associate additional data

with existing GLUE entities and publish this additional data. These mechanisms

correspond to two of the concrete realizations of the conceptual methods presented in

Section 3; namely, the Attribute-Extension and Class-Extension strategies. The main

differences are (i) GLUE 1.3 Attribute-Extensions are limited to a few GLUE classes

through the capacity attribute, whereas under GLUE 2.0, all Classes (except Exten-

sions) can be extended by adding one or more OtherInfo attributes. (ii) GLUE 1.3

allows for Services to be extended by using instances of a GlueServiceData Entity;

under the LDAP rendering, the Key/Value can be associated with a Service Entity

instance by using a GlueChunkKey – this extends Service instances only, so there are

clear limitations in how this can be used. In contrast, the GLUE 2.0 LDAP rendering

allows all object instances to be extended using one or more Extension instances.

3. Conceptual CDER Access Strategies

Several conceptual strategies have been identified that would allow grid jobs to dis-

cover and access CDERs on grid infrastructures based on the GLUE schema. Each

of the strategies presented describes (i) an approach for publishing information de-

scribing a CDER and (ii) a method for using this published information to satisfy the

specific CDER requirements of a grid job.

3.1. Strategies

A-Priori Strategy

This strategy does not publish any CDER GLUE data and requires that the grid user

has prior knowledge of the specific CDER, its properties, the name of queue used to

2015/12/21; 22:05 str. 6/21

378 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

access it, and any additional access requirements. This is effectively a ‘null-strategy’

and is the only-available CDER access method in the absence any other strategy. It

may, however, be a useful approach, for example, when testing the deployment of new

CDERs.

When submitting a job using this strategy, the user must specify exactly the

grid queue (A ComputeElement Endpoint) where the job is to be executed. For

example, this method has been used to support the execution of GPGPU applications

at selected Sites on the EGI [20].

Named-Queue Strategy

A community-adopted queue-naming convention may be used to indicate that a job

requirement is satisfied or that a resource is attainable by using that queue. For

example, the queue name suffix sdj (Short Deadline Job) has been used to advertise

grid queues that support high-priority job execution [9]. Similarly, the suffix gpgpu

could be used to imply that GPGPU CDERs are available through a specific queue.

Listing 1 demonstrates the specification of a requirement that a job be submitted

to a queue with the gpgpu suffix using the gLite/UMD middleware job description

language (JDL).

Listing 1. An example Named-Queue grid job specification.

[

Type="Job";

JobType =" Normal ";

Executable = "myScript.sh"; # Script to invoke GPGPU application

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {" myScript.sh"};

Regular expression to match all queue names ending with ’gpgpu

↪→ ’

Requirements = (RegExp (".* gpgpu$", other.GlueCEUniqueID));

]

Tagged-Environment

More-versatile strategies are possible if the information schema allows arbitrary new

information to be published alongside the information describing the existing re-

sources. For example, it is common in grid information schemas that environment

tags may be used to advertise that specific software is supported at a Resource Cen-

ter. They may also be used to advertise hardware configurations (e.g., GLUE 1.3

SoftwareEnvironment tags have been used to advertise the availability of Infiniband

networking [16]). This strategy is an implicit mechanism for adding new attribute

values, and it may also be used to publish arbitrary information about the CDER.

2015/12/21; 22:05 str. 7/21

Overview and evaluation of conceptual strategies for accessing (...) 379

The Tagged-Environment strategy is widely used on the EGI to support the execution

of multi-core applications using MPI-START [7].

A concrete example showing how GPGPU CDERs are accessed is as follows:

if a Resource Center publishes the tags shown in Listing 2, then a user requiring

Nvidia Kepler GPGPUs can specifically target those Resource Centers by using the

Requirements expression in Listing 3.

Listing 2. An example GLUE 1.X Tagged-Environment advertising both software (CUDA)

and hardware (NVIDIA-KEPLER) capabilities.

GlueHostApplicationSoftwareRunTimeEnvironment: CUDA

GlueHostApplicationSoftwareRunTimeEnvironment: NVIDIA -KEPLER

Listing 3. Example Tagged-Environment grid job specification requiring the NVIDIA-KEPPLER

hardware capability.

[

...

Requirements = (Member("NVIDIA-KEPLER",other.

↪→ GlueHostApplicationSoftwareRunTimeEnvironment));}

]

Attribute-Extension

Using this strategy, CDERs are explicitly associated with existing grid resources (e.g.,

worker nodes), whose properties are already captured by the information schema

(e.g., ExecutionEnvironment instances). The schema may allow the description of an

existing resource to be internally extended with new attributes and their associated

values. Under GLUE 2.0, Attribute-Extension can be implemented using OtherInfo

attributes that can be applied to any GLUE 2.0 Entities. Listing 4 provides a concrete

example of the use of this strategy to publish detailed information about a GPGPU

CDER. The GPGPU is explicitly associated with an ExecutionEnvironment instance.

The information published is both static – describing hardware characteristics – and

dynamic – reflecting current capacity and utilization.

The Attribute-Extension strategy has been previously used in a prototype UMD-

based testbed to publish GPGPU information in GLUE 2.0 ApplicationEnvironment

instances [22]. Current implementations of job orchestration systems (e.g., the UMD

WMS) will be unable to process CDER extensions to satisfy job requirements, so an

alternative two-phase job submission mechanism was proposed. This will be described

in Section 3.2.

Class-Extension

A by-reference alternative to the by-value Tagged-Environment and Attribute-

Extension strategies may be used if the information schema allows the information

describing existing resources to externally reference information describing CDERs.

2015/12/21; 22:05 str. 8/21

380 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

Listing 4. An example of the publication of static and dynamic GPGPU information by

extending GLUE 2.0 Execution Environment instance using OtherInfo attributes.

objectClass: GLUE2ExecutionEnvironment

...

GLUE2EntityOtherInfo: GPGPUTotalInstances =32

GLUE2EntityOtherInfo: GPGPUsedInstances =2

GLUE2EntityOtherInfo: GPGPUCUDAComputeCapability =2.1

GLUE2EntityOtherInfo: GPGPUMainMemorySize =1024

GLUE2EntityOtherInfo: GPGPUMP =4

GLUE2EntityOtherInfo: GPGPUCoresPerMP =48

GLUE2EntityOtherInfo: GPGPUCores =192

GLUE2EntityOtherInfo: GPGPUClockSpeed =1660

GLUE2EntityOtherInfo: GPGPUECCSupport=false

GLUE2EntityOtherInfo: GPGPUVendor=Nvidia

GLUE2EntityOtherInfo: GPGPUPerNode =2

For example, any GLUE 2.0 Entity may be associated with zero, one, or more in-

stances of the Extension class, each of which contains a single Key/Value pair. These

Key/Value pairs may be used to describe the properties of an associated CDER. This

is illustrated in Listing 5. Like the Attribute-Extension strategy, this strategy requires

the two-phase job-submission mechanism proposed in Section 3.2.

Listing 5. A single GLUE 2.0 Extension instance that is associated with a parent Comput-

ingShare instance. The extension is used to publish the GPGPUPerNode=2 Key/Value pair.

dn: GLUE2ExtensionLocalID=GPU_NVIDIA_P_1 ,GLUE2ShareID=

↪→ gpgpu_gputestvo_ce.example.com_ComputingElement ,

↪→ GLUE2ServiceID=ce.example.com_ComputingElement ,

↪→ GLUE2GroupID=resource ,o=glue

GLUE2ExtensionLocalID: GPU_NVIDIA_P_1

GLUE2ExtensionKey: GPGPUPerNode

objectClass: GLUE2Extension

GLUE2ExtensionValue: 2

GLUE2ExtensionEntityForeignKey: gpgpu_gputestvo_ce.example.

↪→ com_ComputingElement

Listing 6. An LDAP query expression used to find GLUE 2.0 Extension instances with the

GPGPUPerNode key.

GLUE2ExtensionKey=GPGPUPerNode

2015/12/21; 22:05 str. 9/21

Overview and evaluation of conceptual strategies for accessing (...) 381

3.2. Two-Phase Job Submission

The strategies considered in this paper look at the conceptual approach for tackling

the publication of CDER-related data. It is intended that the published data be

used to help grid users or services identify where the CDERs are deployed, as well

as their capabilities, usage, and state. By using the published data, grid jobs can be

restricted to matching Sites. However, current implementations of job orchestration

systems (such as the Workload Management System) cannot exploit the published

CDER data. A two-phase approach was developed [22] in a prototype gLite/UMD-

based grid infrastructure that used the Attribute-Extension of a GLUE 2.0 Applica-

tionEnvironment to publish information describing GPGPUs. The same two-phase

approach is applied in Section 4.1 to both Attribute-Extension and Class-Extension

strategies

Extract CDER
Requirements

from Job
Description

(1)

(2) CDER Requirements Query

Response

Replace CDER
Requirements

with restriction
to matching

Compute
Elements Submit Grid Job

(Global) Grid
Information

Service

Job Orchestration
(e.g WMS)

(3)

(5)

Phase 1

Phase 2

(4)

UI Two-Phase
CDER grid job
Submission

Figure 2. An abstract model of the two-phased submission of a grid job with CDER

requirements.

A higher-level view of the two-phase model (Fig. 2) shows how the grid user can

handle jobs requiring CDERs. In Phase-1, Step (1) is initiated on the User Interface

– the machine from which grid jobs are submitted. This step extracts CDER require-

ments from the Job Description and is used to determine the type of CDERs required;

Step (2) builds the GIS CDER query and then queries the GIS. This step is inde-

pendent of any job-orchestration system, such as the WMS. In Step (3), results from

the query are returned to the User Interface; in Step (4), the response data is used

to determine the set of all site ComputeElements that support the specified CDER;

but at this point, it has not yet been determined which of these ComputeElements

2015/12/21; 22:05 str. 10/21

382 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

satisfies the specific CDER requirements. The data returned for each of these Com-

puteElements is then reconstituted in ClassAd [14] format as a Resource Offer. A

ClassAd Resource Request is created from the job CDER requirements. The Resource

Request is matched against the Resource Offer to determine if the ComputeElement

satisfies the original CDER requirements. In this way, a list of all ComputeElements

satisfying CDER requirements can be calculated. This list of matching ComputeEle-

ments is used as the basis of a refined and targeted job requirement expression. All

of this Step (4) is performed on the User Interface machine. Finally, the Phase-2

step (5) is to submit the modified grid job in the usual manner to a job-orchestration

system.

To summarize, the first phase is to refine the job requirements to a targeted

expression, and the second phase is to submit the targeted job to a job-orchestration

system (such as the WMS). The first phase does not involve job orchestration.

4. Analysis

The conceptual strategies presented in Section 3 introduced five different approaches

that may be taken when integrating CDERs into grid environments. Furthermore,

some concrete examples have been presented to illustrate how these strategies may be

used in practice. In Section 4.1 below, a methodology for comparing these strategies is

proposed. The methodology sets out criteria for the evaluation of each strategy, while

Section 4.2 provides an analysis of the strategies using these criteria. The analysis is

summarized in Table 1.

Table 1

Summary of CDER Strategy Evaluation

D
is

co
v
er

y

S
em

a
n
ti

c

R
es

o
u
rc

e

D
et

a
il

S
em

a
n
ti

c

S
tr

u
ct

u
re

D
y
n
a
m

ic

In
fo

rm
a
-

ti
o
n

G
L

U
E

1
/
2

T
im

e

E
ffi

ci
en

cy

S
p
a
ce

E
ffi

ci
en

cy

2
-P

h
a
se

A-Priori No None None No Any N/A N/A No

Named-Queue Yes Minimal Minimal Minimal Any N/A N/A No

Tagged-Environment Yes Coarse Minimal Deprecated 1.3 Low N/A No

Attribute-Extension Yes Fine Yes Yes 2.0 Med High Yes

Class-Extension Yes Fine Yes Yes 2.0 High Low Yes

To aid the comparison, each of the strategies is applied to a representative test

case (a typical GPGPU resource) using an LDAP rendering. This test case is used to

compare the cost of each strategy with respect to data size and query time.

2015/12/21; 22:05 str. 11/21

Overview and evaluation of conceptual strategies for accessing (...) 383

4.1. Methodology

Each of the conceptual strategies proposed in Section 3 is evaluated below, with

respect to the following criteria:

Discovery. It is only possible to discover previously unknown CDERs if the strategy

used publishes at least some minimal information to identify the resource in the

information system.

Semantic Resource Detail. The ability of a strategy to publish semantic detail

beyond the mere existence of a particular type of CDER would enable more-

powerful job requirement satisfaction. As an example, a CDER such as a GPGPU

may have several intrinsic properties (GPGPU memory size, model, etc.) that are

interesting for resource selection, so the strategy must be capable of publishing

such details.

Semantic Structure. Similarly, the ability of a strategy to associate CDERs with

other grid entities will again facilitate more-powerful resource selection.

Dynamic Information. While certain CDER characteristics (e.g., those describing

physical hardware properties) will remain static, dynamically changing proper-

ties such as current availability, utilization, and fairshare measures will also be

important considerations in resource selection. Strategies will vary in their ability

to dynamically update such information.

GLUE version. Each strategy may be more or less appropriate to each version of

the GLUE schema.

Information Time Efficiency. The effort required to (i) satisfy the CDER require-

ments for a specific grid job, and (ii) construct a complete representation of the

current state of a CDER is considered for each strategy. If no data is published,

then this is deemed Not Applicable (N/A).

Information Space Efficiency. Conceptually, the properties of a CDER are pub-

lished as Key/Value pairs. The overhead of publishing this data is considered

under this heading.

Matchmaking/Job Submission Support. Some strategies will allow CDER re-

quirements to be satisfied directly using existing job specification and submission

mechanisms, while other strategies will require an extended mechanism, such as

the two-phase job submission approach described in Section 3.2.

In order to illustrate and quantitatively compare the strategies, the evaluation refer-

ences a contemporary example of a GPGPU CDER. A schema representing a set of

typical GPGPU properties and (GPGPU-related) LRMS properties is tabulated in

Table 2.

Experiment 1: Data Publication Cost

The first quantitative experiment used in Section 4.2 examines the total data size of

the published CDER information when using each of the the strategies under an EGI

BDII/LDAP-based realisation. The summary results are presented in Table 3.

2015/12/21; 22:05 str. 12/21

384 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

Table 2

Schema representing typical properties of a GPGPU CDER

Sample GPGPU attributes Type Source Creation Sample Values

TotalGPGPU Integer LRMS Dynamic 32

FreeGPGPU Integer LRMS Dynamic 2

GPGPUPerNode Integer LRMS Static 2

GPGPUCUDAComputeCapability Float GPGPU Static 2.1

GPGPUMainMemorySize Integer GPGPU Static 1024

GPGPUMP Integer GPGPU Static 4

GPGPUCoresPerMP Integer GPGPU Static 48

GPGPUCores Integer GPGPU Static 192

GPGPUClockSpeed Integer GPGPU Static 1660

GPGPUECCSupport Boolean GPGPU Static false

GPGPUVendor String GPGPU Static Nvidia

GPGPUModel String GPGPU Static GTS 450

Table 3

Overhead of publishing sample data under LDAP Data Interchange Format

Strategy Byte-count

A Priori N/A

Named-Queue N/A

Tagged-Extension (GLUE 1.3) 800

Tagged-Extension (GLUE 2.0) 10500

Attribute-Extension 800

Class-Extension 4800

Experiment 2: Timed CDER Matchmaking

A second quantitative experiment looks at the time taken to determine the set of

ComputeElements that satisfy a sample CDER property. Only GLUE 2.0 strategies

that satisfy the Fine Semantic Resource Detail, Semantic Structure, and Dynamic In-

formation criteria are considered. The experiment methodology is as follows: (i) Gen-

erate a snapshot of the GLUE 2.0 data from an EGI Top-Level BDII; (ii) the sample

data from Table 2 is used to add GLUE 2.0 data representing CDERs (that don’t

presently exist) in the form required for that strategy. In the case of the Attribute-

Extension strategy, OtherInfo attribute data is inserted into a sample set of objects.

In the Class-Extension strategy case, a set of Extension objects are generated, con-

sisting of Key/Value and Foreign Key; and (iii) the amended GLUE 2.0 is copied

to a modified testbed Top-Level BDII as a snapshot. This modification to the BDII

disables any further updates to the GLUE data.

The data presented in Table 4 is the average system-time cost (measured in sec-

onds) of matching a sample ClassAd GPGPU Resource Request against 100 Resource

2015/12/21; 22:05 str. 13/21

Overview and evaluation of conceptual strategies for accessing (...) 385

Offers generated from GLUE 2.0 BDII LDAP queries. The Schema in Table 2 was used

to generate the GLUE 2.0 data for Attribute-Extension and Class-Extension Entities.

This data was appended to 100 randomly selected GLUE2ComputingShare Entities

(Attribute-Extension strategy). Similarly, 1200 Glue2Extension objects were gener-

ated to extend 100 GLUE2ComputingShares (Class-Extension strategy). The time

values represent the cost of retrieval, Resource Offer generation, and match-making,

and returning a list of matching resources.

Table 4

Average system-time cost, measured in seconds, of matching a sample ClassAd GPGPU

Resource Request against 100 Resource Offers generated from GLUE 2.0 BDII LDAP queries.

Strategy Time (ms)

Attribute-Extension 1.26

Class-Extension 1.31

The baseline EGI GLUE 2.0 data used to populate the Top-Level BDII is rep-

resentative of the state of a very large grid infrastructure. Indeed, an EGI BDII

currently contains more than 105 GLUE 2.0 Entities. The modified BDII’s snapshot

of this data is intended to simulate querying and discovering CDERs in Grids with a

similar number of GLUE objects to EGI.

4.2. Strategy Evaluations

Each of the conceptual strategies is considered with reference to the criteria in Sec-

tion 4.1, and a summary of the evaluation is shown in Table 1.

A-Priori Strategy

The A-Priori strategy is clearly contrary to the grid resource discovery principle – no

data relating to the CDER or the LRMS is captured or published. This method must

be deemed unsuitable for use for handling CDERs except for test purposes.

Named-Queue Strategy

The Named-Queue strategy requires that, at a minimum, the name of the queue is

used to encode the nature of the CDER. This strategy is one of the easiest available

methods to publish/discover particular CDER types. However, it does not work well

as a method to encode the other properties listed in Table 2. Support for Semantic

Resource Details and Semantic Structure is Minimal. Furthermore, Dynamic Infor-

mation cannot be encoded into the queue name. Consequently, this method allows

very limited resource discovery.

One method that may be used to publish the capacity and utilization of the

CDER resources is to configure the LRMS with a 1 : 1 binding between a CPU core

and a dependent CDER. Unbound CPUs must then be configured to be unavailable to

the LRMS. The effect of applying this configuration is that the capacity and utilization

2015/12/21; 22:05 str. 14/21

386 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

of CDERs can be directly determined from the capacity and utilization of the CPUs.

A negative consequence of this configuration is that it may result in CPU under-

utilization on many-core systems. This is due to the unavailability of the unbound

and non-allocateable CPUs. This configuration also results in a condition whereby

certain job requirements cannot be met despite the availability of sufficient resources

(again, due to the unbound CPUs).

Tagged-Environment Strategy

Neither of the first two strategies support the publication of arbitrary informa-

tion describing CDERs. In contrast, the remaining Tagged-Environment, Attribute-

Extension, and Class-Extension strategies enable the publication of information with

greater semantic detail. The first of these – Tagged-Environment – allows Sites to

publish arbitrary data enabling basic CDER discovery. The limitations of this strat-

egy are: (a) there are no implicit relationships between published tags, and any

relationship between tags must be reconstructed by other means; (b) dynamic data

is possible but impractical – tags are normally treated as static values. Encoding

frequently changing CDER capacity, usage, or fairshare measures into a tag implies

removing old tags and adding new ones. Hence, this method cannot be recommended.

If the schema in Table 2 were to be published as GLUE 1.3 SoftwareRuntimeEn-

vironment attributes, then the production of the sample GLUE data generates ap-

proximately 800 bytes – a relatively small amount of data.

Listing 7. Sample Data for Tagged-Environment Strategy.

GlueHostApplicationSoftwareRunTimeEnvironment: TotalGPGPU =32

GlueHostApplicationSoftwareRunTimeEnvironment: FreeGPGPU =30

GlueHostApplicationSoftwareRunTimeEnvironment: GPUPerNode =2

GlueHostApplicationSoftwareRunTimeEnvironment:

↪→ GPUCUDAComputeCapability =2.1

GlueHostApplicationSoftwareRunTimeEnvironment: GPUMainMemorySize

↪→ =1024

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUMP =4

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUCoresPerMP

↪→ =48

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUCores =192

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUClockSpeed

↪→ =1160

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUECCSupport=

↪→ false

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUVendor=

↪→ Nvidia

GlueHostApplicationSoftwareRunTimeEnvironment: GPGPUModel=

↪→ GTS_450

2015/12/21; 22:05 str. 15/21

Overview and evaluation of conceptual strategies for accessing (...) 387

There are, however, some negative effects that have been observed when eval-

uating this approach on the EGI. Namely, GLUE 1.3 SoftwareRuntimeEnvironment

attributes are automatically converted by the UMD grid-middleware into individual

GLUE 2.0 ApplicationEnvironment object instances. Using the the sample values

from Listing 7, the GLUE2 information provider produced over 10.5 KB for the

12 ApplicationEnvironment objects – over 800 bytes per object. Note that, as the

SoftwareRuntimeEnvironment tags do not exist in native GLUE 2.0, this strategy is

only applicable to GLUE 1.3.

Attribute-Extension Strategy

This strategy uses GLUE 2.0 OtherInfo attributes to insert an arbitrary number of

Key/Value pairs into selected Entity instances. In this way, objects can be rich in

Fine Semantic Resource Detail. Furthermore, these Key/Value pairs can be applied

to different entities as appropriate – CDER hardware properties can be applied to

ExecutionEnvironment instances, and capacity and utilization data can be applied

to VOShare instances, so Semantic Structure is supported. The individual attribute

values in object instances can be Dynamically updated, but only by converting the

Key/Value pair to a string and replacing the old string with the new one. This has

an impact on the Time Efficiency. All GLUE 2.0 Entities can be extended in this

strategy by using OtherInfo, but support under GLUE 1.3 is limited to a few Entities

that support capability attributes. Space Efficiency is High as data publishing costs

are similar to the GLUE 1.3 Tagged-Environment strategy (approximately 800 bytes),

but would increase linearly (by less than 160 bytes per VOShare). To use the CDER

data to submit grid jobs, the two-phase method must be used.

Class-Extension Strategy

Arbitrary Extension instances, consisting of a key, a value, and a Foreign Key refer-

ence to the object instance that it extends, can be created in the GLUE 2.0 LDAP

rendering. As a result, the basic Discovery, Fine-grained Semantic Resource Details,

and Semantic Structure criteria are satisfied. Dynamic Information is supported by

updating the Extension value. Furthermore, discovering Extension attributes Keys or

Values are low-cost operations, so the Time Efficiency is High. There is an overhead

in the creation of each Extension instance, as each Extension (and its Key/Value/For-

eign Key) is encapsulated with extra LDIF data. This encapsulation data is generally

several orders of magnitude greater than both the key and value. For the sample

data, the average number of bytes for both the key and values was approximately 17

bytes, but encapsulating a single Key/Value pair in an object costs in the order of

400 bytes (including the Foreign Key). So, Space Efficiency is Low in comparison to

Attribute-Extension, which is counter-intuitive for a by-reference mechanism. To use

the CDER data to submit grid jobs, the two-phase method must be used.

2015/12/21; 22:05 str. 16/21

388 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

5. Related Work

GLUE Rendering and Information Models

The LDAP rendering is one of several methods that may be used to publish GLUE

information. Other renderings that have been used include XML (the Nordugrid ARC

middleware [15]) and SQL (R-GMA [5]). Furthermore, the XML approach to handling

Extensions differs significantly to the LDAP approach. In the XML rendering, all

Extensions and their attributes are inserted as a collection of XML subtrees to the

object that they extend. This approach falls under the Attribute-Extension strategy.

Handling Software Licenses

The question of how to handle limited software licenses in grid environments is quite

similar to the CDER problem, particularly in the case where access to software is node-

locked ; i.e., the software may only run on certain nodes due to license restrictions.

A typical way to handle this in the LRMS is to assign a nominal “property” to

the node – when the user needs a license, then a specific LRMS directive ensures

the allocation of only those nodes satisfying this property. Furthermore, by treating

the software as a Generic Consumable Resource (which is now supported by most

LRMS’s), the usage of the software can also be managed by the LRMS. The key

differences between the treatment of CDERs and the Software Applications is that the

GLUE 2.0 ApplicationEnvironment can already be used to publish the availability of

particular software as well as to indicate capacity and usage of licenses. Other GLUE

2.0 Entities such as the ApplicationEnviromentHandle can be used to guide the user

application on how to configure or bootstrap the application’s environment.

Other Information Systems

The Relational Grid Monitoring Architecture (R-GMA) [5] was developed as a generic

grid information system based on a Producer/Consumer model. Inserting, updating,

deleting, and querying of data was available through command-line tools and an

API that supported a subset of the SQL92 query language standard. In addition

to publishing GLUE 1.3, R-GMA allowed users and services to publish, consume,

update, and query other non-GLUE data. This system was used to publish LRMS

Usage Records to monitor the usage of Compute Resources across the EGEE, a grid

infrastructure that evolved into the current EGI. User-based applications included

grid-wide intrusion detection [10]. The R-GMA may have been a suitable facility

for Sites to publish up-to-date information about CDERs without depending on the

GLUE and the GIS; however, this is no longer in use anywhere.

Hierarchical Brokering

Toor et al [18] describe a prototype extension to the ARC middleware’s job-submission

system on a User Interface. Additional static and dynamic information about re-

2015/12/21; 22:05 str. 17/21

Overview and evaluation of conceptual strategies for accessing (...) 389

sources are published through a GLUE 2.0 XML-based information system. ARC

performs brokering on the User Interface, and this is known as Distributed Brokering.

Under the gLite/UMD middleware, job submission can either be directed at a

user-specified resource without any brokering or left to a job-orchestration system

(such as the Workload Management System). The WMS is an example of Centralised

Brokering. The two-phase method presented in this paper implements Hierarchical

Brokering with the pre-filter stage acting as a Distributed Broker and the final job-

orchestration through the WMS acting as a Centralised Broker.

The available brokering criteria (Random, FastestQueue, Benchmark, Data) [19]

used by the ARC middleware to select resources is not as comprehensive as those

available under the WMS. Indeed, the WMS match-making system simultaneously

supports multiple criteria (Queue Utilization, Benchmark, etc.) for ranking matching

resources.

6. Conclusions and Future Work

Any strategy for integrating CPU-dependent execution resources into grid infras-

tructures must support the fine-grained publication of the resource’s properties and

capabilities. In addition, the dynamic publication of the number of such resources

installed (capacity), their utilization, and any fairshare measures are also required.

Complementary mechanisms to discover and select resources based on these factors

(properties, capabilities, capacity, utilization, and fairshares) allow grid users to refine

the selection of Sites to only those that match their needs.

Of the five conceptual strategies investigated in this paper, some strategies that

have previously been applied for use on the grid – A Priori, Named-Queue, and

Tagged-Extension – cannot be effectively used with CDERs. The final two strategies

(Attribute-Extension and Class-Extension) have been shown to be the most-flexible

strategies for adding arbitrary (CDER) attributes and their values. However, they

have their own weaknesses and strengths. The Attribute-Extension strategy is more

data efficient, and the extension data is added internally to the object instance. The

Class-Extension strategy creates new Extension instances, and this incurs a data

volume penalty. However, updating individual attribute values will be more time

efficient.

Although the match-making time measurements (Table 4) show that the Class-

Extension strategy is slightly slower than the Attribute-Extension strategy, there is

scope for reducing the time taken for Class-Extension even further. The measured

time includes the cost of retrieving all Key/Value pairs for the GPGPU CDER. This

need not be the case for the Class-Extension strategy. Only the Keys/Value pairs

corresponding to the keys specified in the job-requirements expression are needed

when generating the Resource Offer. Under Attribute-Extension, all OtherInfo values

are retrieved – this is due to limitations in constructing more-specific LDAP queries.

The question of whether a hybrid approach (i.e., using both Attribute and Class-

Extension strategies to describe the CDER state) may offer a more-optimal solution

2015/12/21; 22:05 str. 18/21

390 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

has yet to be investigated. In particular, a hybrid approach that uses Attribute-

Extension for describing static properties and uses Class-Extensions for dynamically

changing data may be a good space and time solution, and should be explored in

future work.

Further areas of improvement that could be addressed in future work may be to

investigate strategies that help avoid CDER namespace collisions. These collisions

may occur if different Sites use the same name to advertise different CDER types,

or in the case of the same CDER type, different attributes have been advertised.

A potential solution is to ensure that each CDER definition has a globally identifiable

unique identifier that is published as part of the CDER schema.

Acknowledgements

This work carried out on behalf of the Telecommunications Graduate Initiative (TGI)

project. TGI is funded by the Higher Education Authority (HEA) of Ireland under the

Programme for Research in Third-Level Institutions (PRTLI) Cycle 5 and co-funded

under the European Regional Development Fund (ERDF). The authors also acknowl-

edge the use of additional support and assistance provided by the European Grid In-

frastructure. For more information, please reference the EGI-InSPIRE paper[11].

References

[1] Anderson D.P.: BOINC: A System for Public-Resource Computing and Storage.

In: 5th International Workshop on Grid Computing (GRID 2004), 8 November

2004, Pittsburgh, PA, USA, Proceedings, R. Buyya, ed., pp. 4–10. IEEE Com-

puter Society, 2004. http://doi.ieeecomputersociety.org/10.1109/GRID.

2004.14.

[2] Bird I.: Computing for the Large Hadron Collider. Annual Review of Nuclear and

Particle Science, vol. 61(1), pp. 99–118. http://dx.doi.org/10.1146/annurev-

nucl-102010-130059.

[3] Burke S., Campana S., Lanciotti E., Litmaath M., Lorenzo P.M., Miccio V.,

Nater C., Santinelli R., Sciaba A.: The gLite 3.2 User Guide. https://edms.

cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf, 2012.

[4] Burke S., Field L., Horat D.: Migration to the GLUE 2.0 information schema in

the LCG/EGEE/EGI production Grid. Journal of Physics: Conference Series,

vol. 331(6), p. 062004, 2011. http://stacks.iop.org/1742-6596/331/i=6/a=

062004.

[5] Cooke A.W., Gray A.J.G., Ma L., Nutt W., Magowan J., Oevers M., Taylor

P., Byrom R., Field L., Hicks S., Leake J., Soni M., Wilson A.J., Cordenonsi

R., Cornwall L., Djaoui A., Fisher S., Podhorszki N., Coghlan B.A., Kenny S.,

O’Callaghan D.: R-GMA: An Information Integration System for Grid Monitor-

ing. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and

ODBASE – OTM Confederated International Conferences, CoopIS, DOA, and

ODBASE 2003, Catania, Sicily, Italy, November 3–7, 2003, Lecture Notes in

2015/12/21; 22:05 str. 19/21

Overview and evaluation of conceptual strategies for accessing (...) 391

Computer Science, R. Meersman, Z. Tari, D.C. Schmidt, eds, vol. 2888, pp. 462–

481. Springer, 2003. http://dx.doi.org/10.1007/978-3-540-39964-3_29.

[6] David M., Borges G., Gomes J., Pina J.M., Plasencia I.C., Fernández-del-

Castillo E., López Á., Orviz P., Cacheiro J.L., Fernández C., Simón Á.: Software

Provision Process for EGI. Computing and Informatics, vol. 31(1), pp. 135–148,

2012. http://www.cai.sk/ojs/index.php/cai/article/view/892.

[7] Fernández-del-Castillo E., Walsh J., Simon A.: Parallel Computing Workshop.

In: Proceedings of the EGI Community Forum 2012/EMI Second Technical Con-

ference. Proceedings of Science, Munich, Germany, 2012. http://pos.sissa.

it/archive/conferences/162/057/EGICF12-EMITC2_057.pdf.

[8] Fuller S., Millet L., eds.: The Future of Computing Performance: Game Over or

Next Level? The National Academies Press, Washington, DC, 2011.

http://www.nap.edu/catalog/12980/the-future-of-computing-

performance-game-over-or-next-level.

[9] Germain-Renaud C., Loomis C., Moscicki J.T., Texier R.: Scheduling for Re-

sponsive Grids. Journal of Grid Computing, vol. 6(1), pp. 15–27, 2008.

http://dx.doi.org/10.1007/s10723-007-9086-4.

[10] Kenny S., Coghlan B.A.: Towards a Grid-wide Intrusion Detection System. In:

Advances in Grid Computing - EGC 2005, European Grid Conference, Amster-

dam, The Netherlands, February 14-16, 2005, Revised Selected Papers, P.M.A.

Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, M. Bubak, eds, Lecture Notes in

Computer Science, vol. 3470, pp. 275–284. Springer, 2005.

http://dx.doi.org/10.1007/11508380_29.

[11] Newhouse S.: EGI-InSPIRE paper. http://go.egi.eu/pdnon, 2010.

[12] OGF GLUE 1.3 Specification.

https://redmine.ogf.org/dmsf_files/61?download=.

[13] OGF GLUE 2.0 Specification.

http://redmine.ogf.org/dmsf/glue-wg?folder_id=18.

[14] Raman R., Livny M., Solomon M.H.: Matchmaking: Distributed Resource Man-

agement for High Throughput Computing. In: Proceedings of the Seventh IEEE

International Symposium on High Performance Distributed Computing, HPDC

’98, Chicago, Illinois, USA, July 28–31, 1998, pp. 140–146. IEEE Computer

Society, 1998. http://dx.doi.org/10.1109/HPDC.1998.709966.

[15] Smirnova O., Ellert M., Johansson D.: ARIS and EGIIS: Installation, Configura-

tion and Usage Manual. http://www.nordugrid.org/documents/aris-egiis.

pdf.

[16] The EGI MPI Users Guide. https://wiki.egi.eu/wiki/MPI_User_Guide.

[17] Top 500 Supercomputers Highlights – November 2014.

http://www.top500.org/lists/2014/11/highlights/.

[18] Toor S., Mohn B., Cameron D., Holmgren S.: Case-Study for Different Mod-

els of Resource Brokering in Grid Systems. http://www.it.uu.se/research/

reports/2010-009/2010-009-nc.pdf, 2010.

2015/12/21; 22:05 str. 20/21

392 John Walsh, Jonathan Dukes, Gabriele Pierantoni, Brian Coghlan

[19] User Manual for ARC 11.05 (client version 1.0.0) and above.

http://www.nordugrid.org/documents/arc-ui.pdf, 2014.

[20] Vella F., Cefalá R.M., Costantini A., Gervasi O., Tanci C.: GPU Comput-

ing in EGI Environment Using a Cloud Approach. In: International Con-

ference on Computational Science and Its Applications, ICCSA 2011, San-

tander, Spain, June 20–23, 2011, A. Iglesias, B.O. Apduhan, O. Gervasi,

D. Taniar, M.L. Gavrilova, eds, pp. 150–155. IEEE Computer Society, 2011.

http://doi.ieeecomputersociety.org/10.1109/ICCSA.2011.61.

[21] Walsh J., Coghlan B., Eigelis K., Sipos G.: Results from the EGI GPGPU Virtual

Team’s User and Resource Centre Administrators Surveys. 2012. Crakow Grid

Workshop 2012.

[22] Walsh J., Dukes J.: Supporting job-level secure access to GPGPU resources

on existing grid infrastructures. In: Proceedings of the 2014 Federated Confer-

ence on Computer Science and Information Systems, Warsaw, Poland, September

7–10, 2014, M. Ganzha, L.A. Maciaszek, M. Paprzycki, eds, pp. 781–790, 2014.

http://dx.doi.org/10.15439/2014F337.

Affiliations

John Walsh
School of Computer Science and Statistics, Trinity College Dublin, John.Walsh@scss.tcd.ie

Jonathan Dukes
School of Computer Science and Statistics, Trinity College Dublin, jdukes@scss.tcd.ie

Gabriele Pierantoni
School of Computer Science and Statistics, Trinity College Dublin, pierantg@scss.tcd.ie

Brian Coghlan
School of Computer Science and Statistics, Trinity College Dublin, coghlan@scss.tcd.ie

Received: 2.12.2014

Revised: 15.05.2015

Accepted: 19.05.2015

2015/12/21; 22:05 str. 21/21

Overview and evaluation of conceptual strategies for accessing (...) 393

