PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removing iron impurities from feldspar ore using dry magnetic separation (part one)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Feldspar is a basic requirement for glass, ceramics, and other industries. The presence of iron in feldspar is one of the challenging aspects of feldspar processing. To improve the quality of feldspar for use in various industries, dry magnetic separation is one of the best techniques for reducing iron in feldspar, especially in arid regions to overcome the common problem of lack of water resources as well as to reduce the operational cost of the enrichment process. Therefore, dry magnetic separation experiments were carried out to remove the iron content from feldspar ore in the Wadi Umm Harjal area in Egypt to meet the specifications required for different industries. The sample was analysed using XRD, XRF, and optical microscopy, which revealed that it is a mixture of potassium feldspar (microcline/orthoclase), albite, and quartz in the presence of hematite mineral serving as the main iron impurities in addition to the free silica content. The effect of parameters on the activity of the dry high magnetic separators was investigated in addition to cleaning the products. The iron oxide reduced from 0.69% in the head sample to 0.08% after dry high-intensity magnetic separation, and the whiteness increased from 82.01% in the head sample to 95.97% in the separated concentrate. The experimental results showed that there is a possibility to obtain feldspar concentrates with low content of Fe2O3 from the area where according to the results, approximately 88.4% of iron was removed from the head sample.
Rocznik
Strony
19--33
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr.
Twórcy
  • Central Metallurgical Research & Development Institute (CMRDI), Helwan, Cairo, Egypt
  • Egyptian Mineral Resources Authority (EMRA), Abbasia, Cairo, Egypt
  • Tabbin Institute for Metallurgical Studies (TIMS), Helwan, Cairo, Egypt
  • Tabbin Institute for Metallurgical Studies (TIMS), Helwan, Cairo, Egypt
Bibliografia
  • [1] M.S. Celik, I. Can, R.H. Eren, Removal of titanium impurities from feldspar ores by new flotation collectors. Minerals Engineering 11 (12), 1201-1208 (1998). DOI: https://doi.org/10.1016/S0892-6875(98)00106-X.
  • [2] L. Shaomin, G. Wenqi, W. Yang, Preparation and Characterization of Metal-doped Naometric TiO2/Kaolin Photocatalyst Composites [J]. Metal Mine 8 (2), 411-416 (2004).
  • [3] L. Shaomin, G. Wenqi, B. Chunhua, Q. Yi, G. Yongqin, X. Bihua, W. Cheng, Preparation of TiO2/kaolinite nanocomposite and its photocatalytical activity. Journal of Wuhan University of Technology-Mater. Sci. Ed. 21 (4), 12-15 (2006). DOI: https://doi.org/10.1007/BF02841194Y.
  • [4] Liu, H. Peng, M. Hu, Removing iron by magnetic separation from a potash feldspar ore. Journal of Wuhan University of Technology-Mater. Sci. Ed. 28 (2), 362-366 (2013). DOI: https://doi.org/10.1007/s11595-013-0696-3.
  • [5] Z.T. Ghalayini, Feldspar and nepheline syenite. Mineral Commodity Summaries, U.S. Geological Survey: Reston. VA. USA. 58-59 (2020). DOI: http://dx.doi.org/10.3133/mcs2020.
  • [6] N.A. Abdel-Khalek, A. Yehia, S.S. Ibrahim, Technical note beneficiation of Egyptian feldspar for application in the glass and ceramics industries. Minerals Engineering 7 (9), 1193-1201 (1994). DOI: https://doi.org/10.1016/0892-6875(94)90006-X.
  • [7] T.R. Boulos, S.S. Ibrahim, A. Yehia, Differential flotation of some Egyptian feldspars for separation of both silica and iron oxides contaminants. Journal of Minerals and Materials Characterization and Engineering 3 (06), 435 (2015). DOI: https://doi.org/10.4236/jmmce.2015.36046.
  • [8] R.A. Kauffman, D. Van Dyk, Feldspars in Industrial minerals and rocks. 6th ed. Carr D.D., editor. Society for Mining, Metallurgy, and Exploration Inc.; Littleton, CO, USA. 473-481 (1994).
  • [9] R.A Howie, MINERALS| Feldspar in Encyclopedia of Geology 1, 534-539 (2005). DOI: https://doi.org/10.1016/B0-12-369396-9/00267-7.
  • [10] M.J. Potter, Feldspar and nepheline syenite. US Geological Survey Minerals Yearbook. (2003).
  • [11] M. Dondi, Feldspathic fluxes for ceramics: Sources, production trends and technological value. Resources, Con servation and Recycling 133, 191-205 (2018). DOI: https://doi.org/10.1016/j.resconrec.2018.02.027.
  • [12] A.C. Silva, S.D. Carolina, D.N. Sousa, E.M. Silva, Feldspar production from dimension stone tailings for application in the ceramic industry. Journal of Materials Research and Technology 8 (1), 1-7 (2019). DOI: https://doi.org/10.1016/j.jmrt.2018.02.011.
  • [13] V. Fuertes, J.J. Reinosa, J.F. Fernandez, E. Enríquez, Engineered feldspar-based ceramics: A review of their potential in ceramic industry. Journal of the European Ceramic Society 42 (2), 307-326 (2022). DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.10.017.
  • [14] S. Saisinchai, T. Boonpramote, P. Meechumna, Upgrading feldspar by WHIMS and flotation techniques. Engineering Journal 19 (4), 83-92 (2015). DOI: https://doi.org/10.4186/ej.2015.19.4.83.
  • [15] S. Ferrari, A.F. Gualtieri, The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science 32 (1-2), 73-81 (2006). DOI: https://doi.org/10.1016/j.clay.2005.10.001.
  • [16] F.H. El-Rehiem, M.K. Abd El-Rahman, Removal of colouring materials from Egyptian albite ore. Mineral Processing and Extractive Metallurgy 117 (3), 171-174 (2008). DOI: https://doi.org/10.1179/174328508X272371.
  • [17] H. Hacifazlioglu, I. Kursun, M. Terzi, Beneficiation of low-grade feldspar ore using cyclojet flotation cell, conventional cell and magnetic separator. Physicochem. Probl. Miner. Process 48 (2), 381-392 (2012). DOI: https://doi.org/10.5277/PPMP120205.
  • [18] M.M. Ahmed, G.A. Ibrahim, A.M. Rizk, N.A. Mahmoud, Reduce the iron content in Egyptian feldspar ore of Wadi Zirib for industrial applications. Int. J. Min. Eng. Miner. Process 5 (2), 25-34 (2016). DOI: 10.5923/j.mining.20160502.01.
  • [19] P.W. Harben, Feldspar in The Industrial Mineral Handy Book – A Guide to Markets. Specifications and Prices. 4th Edition, Industrial Mineral Information, Worcester Park 412, 124-129 (2002).
  • [20] I. Dogu, A.I. Arol, Separation of dark-colored minerals from feldspar by selective flocculation using starch. Powder Technology 139 (3), 258-263 (2004). DOI: https://doi.org/10.1016/j.powtec.2003.11.009.
  • [21] V. Arslan, Comparison of the Effects of Aspergillus niger and Aspergillus ficuum on the Removal of Impurities in Feldspar by Bio-beneficiation. Applied Biochemistry and Biotechnology 189 (2), 437-447 (2019). DOI: https://doi.org/10.1007/s12010-019-03029-7.
  • [22] F. Burat, O. Kokkilic, O. Kangal, V. Gurkan, M.S. Celik, Quartz-feldspar separation for the glass and ceramics industries. Mining, Metallurgy & Exploration 24 (2), 75-80 (2007). DOI: https://doi.org/10.1007/BF03403362.
  • [23] Y. Zhang, Y. Hu, N. Sun, R. Liu, Z. Wang, L. Wang, W. Sun, Systematic review of feldspar beneficiation and its comprehensive application. Minerals Engineering 128, 141-152 (2018). DOI: https://doi.org/10.1016/j.mineng.2018.08.043.
  • [24] J. Xu, J. Chen, X. Ren, T. Xiong, K. Liu, S. Song, A novel dry vibrating HGMS separator for purification of potash feldspar ore. Separation Science and Technology 57 (3), 484-91 (2022). DOI: https://doi.org/10.1080/01496395.2021.1900250.
  • [25] S. A. Hashemi, B. Rezai, M. R. Tavakoli Mohammadi, S. Javanshir, Characterization and concentration studies of Jalal Abad iron mine. Archives of Mining Sciences 58, 3, 729-745 (2013). DOI: http://dx.doi.org/10.2478/amsc-2013-0051.
  • [26] Subari, B.D. Erlangga, Daryanto, Iron removal from Banjarnegara feldspar by dry high-intensity magnetic separation. In AIP Conference Proceedings 2384 (1), 080001 (2021). DOI: https://doi.org/10.1063/5.0072106.
  • [27] B.A. Wills, J. Finch, Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann (2015).
  • [28] F. Dehghani, R. Khosravi, A. Pazoki, M. Kebe, R. Jahanian, H. Siavoshi, T. Ghosh, Application of magnetic separation and reverse anionic flotation to concentrate fine particles of iron ore with high sulfur content. Physicochem. Probl. Miner. Process 58 (3), 145420 (2022). DOI: https://doi.org/10.37190/ppmp/145420.
  • [29] S.K. Tripathy, V. Singh, N. Suresh, Prediction of separation performance of dry high intensity magnetic separator for processing of para-magnetic minerals. Journal of The Institution of Engineers (India): Series D 96 (2), 131-142 (2015). DOI: https://doi.org/10.1007/s40033-015-0064-x.
  • [30] R.K. Dwari, D.S. Rao, P.S.R. Reddy, Magnetic separation studies for a low grade siliceous iron ore sample. Int. J. Miner. Sci. Technol. 23, 1-5 (2013). DOI: https://doi.org/10.1016%2Fj.ijmst.2013.01.001.
  • [31] S.K. Tripathy, P.K. Banerjee, N. Suresh, Separation analysis of dry high intensity induced roll magnetic separator for concentration of hematite fines. Powder Technol. 264, 527-535 (2014). DOI: https://doi.org/10.1016%2Fj.powtec.2014.05.065.
  • [32] C.P. Hunt, B.M. Moskowitz, S.K. Banerjee, Magnetic properties of rocks and minerals. Rock physics and phase relations: A Handbook of Physical Constants 3, 189-204 (1995). DOI: http://dx.doi.org/10.1029/RF003p0189.
  • [33] https://www.geeksforgeeks.org/iron-ores-hematite-and-magnetite/, accessed: 14.11.2022.
  • [34] Z.F. Cao, P. Qiu, S. Wang, H. Zhong, Benzohydroxamic acid to improve iron removal from potash feldspar ores. Journal of Central South University 25 (9), 2190-2198 (2018). DOI: https://doi.org/10.1007/s11771-018-3907-4.
  • [35] E.Kilinc-Aksay, Multi-stage flotation of colored impurities from albite ore in the presence of some cationic and anionic collectors. Physicochemical Problems of Mineral Processing 54 (2018). DOI: http://dx.doi.org/10.5277/ppmp1805.
  • [36] C. Rattanakawin, B. Thacom, Froth flotation of mixed feldspar. Songklanakarin Journal of Science & Technology 41 (6) (2019).
  • [37] Ž. Sekulić, S.R. Mihajlović, J.N. Stojanović, B.B. Ivoševic, V.D. Kašić, M.R. Ignjatović, Potentiality of obtaining mica flotation concentrate from kaolinised granite. Archives of Mining Sciences 64 (3), 499-508 (2019). DOI: 10.24425/ams.2019.129365.
  • [38] A. Noorbakhsh, M.B.E. Andargoli, The Laboratory Investigations of Reducing Iron and Silica Content of Potassium Feldspar Ore by Flotation. Engineering Science 7 (2), 33-38 (2022). DOI: 10.11648/j.es.20220702.1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f2d480-f23b-46fe-91bc-e31bdc29a865
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.