Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Efekt antynowotworowy inhibitora szlaku syntezy cholesterolu – lowastatyny i terapii fotodynamicznej w raku jelita grubego in vitro
Języki publikacji
Abstrakty
Photodynamic therapy (PDT) is a promising treatment method for non-oncological and oncological diseases. PDT requires the use of photosensitizer, light, and cell oxygen. A selective, cytotoxic effects can be achieved in cancer cells, thanks to formation of radical oxygen species (ROS). Recent data indicate, that PDT with aminolevulinic acid (ALA) is successful in treatment of colorectal cancer. However, anti-cancer effects PDT in vivo, can vary in PDT in vitro, due to low level of oxygenation of tumor cells. Experimental research confirms the role of cholesterol in oncogenesis and indicates, that in colorectal cancer the cholesterol synthesis is disrupted; among others lovastatin belong to inhibitors 3-hydroxy-3-methyl-glutharyl-coenzyme A (HMG-CoA) enzyme of cholesterol synthesis pathway. Anti-tumor potential of statins: antiproliferative and pro-apoptotic, were demonstrated in various tumors in vitro and in vivo. Colorectal cancer, which often has genes mutations that are related to programmed death cells, shows resistance to chemotherapy. The objective of the research was to investigate the effect of antiproliferative and cytotoxic lovastatin and ALA-PDT (in low dose) working separately and in combination method (lovastatin and PDT) − for apoptosis induction, in metastatic colon cell line SW620. Our finding showed, that lovastatin inhibits the growth of cancer cells, depending on the dose and incubation time. ALA-PDT in low dose works on cell cytotoxic, yet do not initiate apoptosis. Whereas, preincubation of cells with lovastatin (IC50) increases the cytotoxic effect after PDT and induces apoptosis in cancer cells SW620, as demonstrated using an assay of Annexin V for flow cytometry. Our research demonstrates for the first time, the effectiveness of ALA-PDT connection with an inhibitor of cholesterol synthesis pathway – lovastatin, in increasing the cytotoxicity and induction of apoptosis in colon cancer cells, that are resistant to chemotherapy.
Terapia fotodynamiczna (ang. photodynamic therapy, PDT) jest obiecującą metodą w leczeniu nowotworowych i nienowotworowych schorzeń. Działanie PDT wymaga użycia fotouczulacza, światła i tlenu komórkowego, dla uzyskania wybiórczego cytotoksycznego efektu w komórkach patologicznych. Efekt ten jest wynikiem powstania wolnych rodników (ROS). Badania pokazują, że PDT z kwasem aminolewulinowym (ALA) jest skuteczna w leczeniu raka jelita grubego. Jednak efekty PDT in vivo, ze względu na niski poziom oksygenacji guza, mogą odbiegać od działania PDT in vitro. Dane eksperymentalne potwierdzają rolę cholesterolu w procesie onkogenezy i wskazują na zaburzony szlak syntezy cholesterolu, m.in. w raku jelita grubego. Statyny, np. lowastatyna, należą do inhibitorów 3-hydroksy-3-metylo-glutarylo-koenzymu A (HMG-CoA) − enzymu szlaku syntezy cholesterolu. Potencjał antynowotworowy statyn, antyproliferacyjny i proapoptotyczny, wykazano w nowotworach in vitro i in vivo. Rak jelita grubego, cechujący się mutacjami genów związanych z apoptozą, wykazuje oporność na standardowe chemioterapeutyki. Celem pracy było zbadanie efektu antyproliferacyjnego i cytotoksycznego lowastatyny i ALA-PDT (w niskiej dawce) działających osobno, oraz w metodzie połączonej (lowastatyna i PDT) – na indukcję apoptozy w przerzutowej linii raka jelita grubego SW620. Wyniki pokazały, że lowastatyna hamuje wzrost komórek w związku zależnym od dawki i czasu inkubacji. ALA-PDT w niskiej dawce działa cytotoksycznie, ale nie inicjuje apoptozy. Natomiast preinkubacja komórek raka z lowastatyną (IC50) zwiększa efekt cytotoksyczny po PDT i indukuje apoptozę w komórkach, co wykazano w teście z aneksyną V na cytometrze przepływowym. Nasze wyniki po raz pierwszy demonstrują skuteczność metody łączonej: ALA-PDT i inhibitora syntezy szlaku cholesterolu – lowastatyny, w zwiększeniu cytotoksyczności i indukcji apoptozy w komórkach raka jelita grubego, opornego na chemioterapię.
Wydawca
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Katedra Patomorfologii, 50-368 Wrocław, ul. Marcinkowskiego 1
autor
- Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Katedra i Zakład Histologii i Embriologii, 50-368 Wrocław, ul. Chałubińskiego 6A
autor
- Polska Akademia Nauk, Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda, 53-114 Wrocław, ul. Weigla 12
autor
- Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Katedra Patomorfologii, 50-368 Wrocław, ul. Marcinkowskiego 1
autor
- Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Katedra i Zakład Histologii i Embriologii, 50-368 Wrocław, ul. Chałubińskiego 6A
Bibliografia
- [1] B. Levin, D.A. Liebermann, B. McFarland, R.A. Smith, D. Brooks, K.S. Andrews, C. Dash, F.M. Giardiello, S. Glick, T.R. Levin, P. Pickhardt, D.K. Rex, A. Thorson, S.J. Winawer: Screening and surveilance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US MultiSociety Task Force on Colorectal Cancer, and the American College of Radiology. Colon cancer develops as a result of the pathologic, CA: A Cancer Journal for Clinicians, vol. 58, 2008, s. 130−160.
- [2] L. Zhuang, J. Kim, R.M. Adam, K.R. Solomon, M.R. Freeman: Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts, Journal of Clinical Investigation, vol. 115, 2005, s. 959–968.
- [3] H. Bessler, H. Salman, M. Bergman, R. Straussberg, M. Djaldetti: In vitro effect of statins on cytokine production and mitogen response of human peripheral blood mononuclear cells, Clinical Immunology, vol. 117, 2005, s. 73−77.
- [4] S. Fulda: Tumor resistance to apoptosis, International Journal of Cancer, vol. 124, 2009, s. 511−515.
- [5] J.W. Choi, S.E. Chung: Lovastatin-Induced Proliferation Inhibition and Apoptosis in C6 Glial Cells, Journal of Pharmacology and Experimental Therapeutics, vol. 289, 1999, s. 572−579.
- [6] J. Dimitroulakos, D. Nohynek, K.L. Backway, D.W. Hedley, H. Yeger, M.H. Freedman, M.D. Minden, L.Z. Penn: Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach, Blood, vol. 93, 1999, s. 1308−1318.
- [7] B. Agarwal, S. Bhendwal, B. Halmos, S.F. Moss, W.G. Ramey, P.R. Holt: Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells, Clinical Cancer Research, vol. 5, 1999, s. 2223−2229.
- [8] W. Wong, J. Dimitroulakos, M.D. Minden, L.Z. Penn: HMG-CoA reductase inhibitors and malignant cel: the statin family of drugs as triggers of tumor-specific apoptosis, Leukemia, vol. 16, 2002, s. 508−519.
- [9] M.R. Graaf, D.J. Richel, C.J. Van Noorden, H.J. Guchelaar: Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer, Cancer Treatment Reviews, vol. 30, 2004, s. 609−641.
- [10] Jakóbisiak, S. Bruno, J.S. Skierski, Z. Darzynkiewicz: Cell cycle-specific effects of lovastatin, Proceedings of the National Academy of Sciences, vol. 88, 1991, s. 3628.
- [11] M.A. Shibata, Y. Ito, J. Morimoto, Y. Otsuki: Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrial-mediated apoptotic mechanism, Carcinogenesis, vol. 25, 2004, s. 1887−1898.
- [12] M.R. Graaf, D.J. Richel, C.J. Van Noorden, H.J. Guchelaar: Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer, Cancer Treatment Reviews, vol. 30, 2004, s. 609−641.
- [13] M. Jalving, J.J. Koornstra, S. De Jong, E.G. De Vries, J.H. Kleibeuker: Review article: the potential of combinational regimen with non-steroidal anti-inflammatory drugs in the chemoprevention of colorectal cancer, Alimentary Pharmacology & Therapeutics, vol. 21, 2005, s. 321−339.
- [14] H. Xiao, Q. Zhang, Y. Lin, S.R Bandaru, S.Y. Chung: Combination of atorvastatin and celecoxib synergistically induces cel cycle arrest and apoptosis in colon cancer cells, International Journal of Cancer, vol. 122, 2008, s. 2115−2124.
- [15] K. Wawrzyniec, A. Kawczyk-Krupka, Z.P. Czuba, W. Król, A. Sieroń: The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro, Photodiagnosis and Photodynamic Therapy, vol. 12, 2015, s. 598−611.
- [16] C.J. Gomer, A. Ferrario, M. Luna, N. Rucker, S. Wong: Photodynamic therapy: combined modality approaches targeting the tumor microenvironment, Lasers in Surgery and Medicine, vol. 38, 2006, s. 516−521.
- [17] A. Ferrario, K.F. von Tiehl, N. Rucker, M.A. Schwarz, P.S. Gill, C.J. Gomer: Antiangiogenic tratment enhances photo- -dynamic therapy responsiveness in a mouse mammary carcinoma, Cancer Research, vol. 60, 2000, s. 4066−4069.
- [18] A. Ferrario, K. Von Tiehl, S. Wong, M. Luna, C.J. Gomer: Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response, Cancer Research, vol. 62, 2002, s. 3956−3961.
- [19] C.J. Kelty, NiJ. Brown, M.W.R. Reed, R. Ackroyd: The use of 5-aminolaevulinic acid as a photosensitiser in photo- dynamic therapy and photodiagnosis, Photochemical & Photobiological Sciences, vol. 1, 2002, s. 158–168.
- [20] C.S. Loh, A.J. MacRobert, J. Bedwell, J. Regula, N. Krasner, S.G. Bown: Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy, British Journal of Cancer, vol. 68, 1993, s. 41–51.
- [21] J. Regula, A.J. MacRobert, A. Gorchein, et al.: Photosensitisation and photodynamic therapy of oesophageal, duodenal and colorectal tumors using 5-aminolevulinic acid induced protoporphyrin IX—a pilot study, Gut, vol. 36, 1995, s. 7–75.
- [22] K.A. Hamdan, I.S. Tait, V. Nadeau, M. Padgett, F. Carey, R.J. Steele: Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy. Report of a case, Diseases of the Colon & Rectum, vol. 11, 2003, s. 1555–1559.
- [23] P. Mlkvy, I. Cavarga, A. Mateasik, S. Pastorekova, M. Takacova: Tissue carbonic anhydrase (CA IX) as a predicting factor for effectivness of photodynamic therapy using ALA in malignant and premalignant gastrointestinallesions. A pilot study. in: 8th International Symposium on Photodynamic Therapy and Photodiagnosis in Clinical Practice, 2015.
- [24] X.M. Yang, H.J. Ma, X.Z. Geng, X.R. Zhang: Hematoporphyrin derivative – mediated photodynamic therapy for human colon carcinoma: a comparative study with LoVo and CoLo205 cells in vitro, Nan Fang Yi Ke Da Xue Xue Bao, vol. 27, 2007, s. 1251−1253, 1256.
- [25] D.E. Godar: Light and death: photons and apoptosis, Journal of Investigative Dermatology Symposium Proceedings, vol. 4, 1999, s. 17−23.
- [26] S.L. Gibson, D.J. Cupriks, J.J. Havens, M.L. Nguyen, R. Hilf: A regulatory role for porphobilinogen deaminase (PBGD) in -aminolevulinic acid (-ALA)-induced photosensitization, British Journal of Cancer, vol. 77, 1993, s. 235−243.
- [27] H. Dailey, A. Smith: Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase, Biochemical Journal, vol. 223, 1984, s. 441−445.
- [28] A. Hoque, H. Chen, X.C. Xu: Statin induced apoptosis and cell growth arrest in prostate cancer cells, Cancer Epidemiology, Biomarkers & Prevention, vol. 17, 2008, s. 88−94.
- [29] D.J. Granville, H. Jiang, M.T. An, J.G. Levy, B.M. McManus, D.W.C. Hunt: Bcl-2 overexpression blocks caspase activation and downsteam apoptotic events instigated by photodynamic therapy, British Journal of Cancer, vol. 791, 1999, s. 95−100.
- [30] L. Varriale, E. Crescenzi, V. Paba, B. Mazziotti di Celso, G. Palumbo: Selective light-induced modulation of Bcl-XL and Bax expressions in indocyanine green-loaded U937 cells: effects of continuous or intermittent photo-sensitization with low IR-light using a 805-nm diode laser, Journal of Photochemistry and Photobiology B: Biology, vol. 57, 2000, s. 66−75.
- [31] C. Denoyelle, P. Albanese, G. Uzan, L. Hong, J.P. Vannier, J. Soria, C. Soria: Molecular mechanism of the anti-cancer activity of crivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells, Cell Signal, vol. 15, 2003, s. 327−338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51f1fcb8-d379-4067-a110-24716a166423