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Abstract. In the present paper we give some condensation type inequalities connected 

with Fibonacci numbers. Certain analytic type inequalities related to the golden ratio 

are also presented. All results are new and seem to be an original and attractive subject 

also for future research. 
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1. Introduction 

The notion of Fibonacci numbers and the golden ratio may be found in many 

branches of mathematics, including number theory, geometry, algebra, matrix 

theory, numerical methods, classical analysis, dynamical systems, and even spec-

tral analysis or music (see monographs [1-3], and selective papers [4-7]). Despite 

such a large spread occurrence of Fibonacci numbers and the golden ratio in math-

ematics, still some areas of mathematics tend to be poorly represented by these 

objects. In our opinion, a good example of such a niche (considered also in this 

paper) is the area of analytic inequalities. We believe this paper opens up a new 

stage of discoveries, and the inequalities presented here will be classical ones 

in the considered area of mathematics. 

The main results of the paper are presented in two sections. In the first one 

we investigated the condensation type inequalities associated with the Fibonacci 

numbers. In the second one we discuss several analytic type inequalities related 

to the golden ratio and Perrin constant. 

 

 

                                                      
* Currently, the fourth author, Barbara Smoleń, is a student of mathematics and this paper is a part 
of her Bachelor's thesis written under the supervision of Prof. Roman Wituła. 
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2. Condensation type inequalities connected with Fibonacci numbers 

We begin with the following inequality based on basic properties of the Fibonacci 

numbers. Let us recall that the Fibonacci numbers are defined by the following 

linear recurrence relation 

�� = ���� + ����, � ∊ ℤ, 

with �� = �� = 1. As a result of the definition we get �� = 0. 
 

Theorem 1. Let 0 < �� ≤ �� ≤. . . ≤ ����, � ∈ ℕ	and � ≥ 2	be a finite sequence 
of real numbers such that two inequalities are satisfied: 

1.  

 �� + �� ≥ ����; (1) 

2.  

 ���� ≥ 2� for some � ∈ ℕ. (2) 

Then there is an index � ∈ �1,2, . . . , �� such that 
��� + ����� > ����� . 

Proof. We prove this by contradiction. Let us suppose that for each index � ∈
{1,2, . . . , n} we have 

 ��� + ����� ≤ ����� , (3) 

which immediately leads to the following inequality 

 ����
� ≥ ������

� + ����� , (4) 

that can be easily shown by induction. Indeed, from (3) we have 

��
� ≥ ��

� + 0 ⋅ ��� = ����� + ����
�, 

�	
� ≥ ��

� + ��� = ����
� + ����� , 

for the initial step and 

 �
��
� ≥ �
��

� + �

� ≥ �
��

� + �
����� + �
����
� + �
����� = �
����

� + �
���   

for the inductive one. 

From (4), on account of (1) we obtain 

 	�� + ��
� ≥ ������
� + �����.  
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Next, let us denote �� = �� + �, where � > 0.	Then the left-hand side of the previ-
ous inequality is equal to the following: 

 	�� + ��
� = 2���� + ∑ 
�� ��

�� 2��
����
�
 .  

Now from (2) it follows directly that ���� > 2��
 for all  � ∈ �1,2, . . . , ��. Indeed, ���� + �� ≥ 2 ⋅ 2��
 and since � ≥ 2, there is ���� > �� . So finally we obtain 

 	�� + ��
� < ������� + ∑ �����

�� 
�� � ����
�
 = ����� + ������

�,  

which contradicts to (4). This completes the proof. 
 

As a direct conclusion of this result we obtain the following generalization: 

Corollary 2. Let 0 < �� ≤ �� ≤. . . ≤ ����, � ∈ ℕ and � ≥ 2 be a finite sequence 
of real numbers satisfying condition 1 of the previous theorem. If, additionally, 

 	�� + ��
� < ������
� + �����,  

for some � > 0, then there is an index � ∈ {1,2, . . . , �} such that 

��� + ����� > ����� . 

Remark 3. For the inequality (2) see also Chern and Cui paper [8]. 

3.  Inequalities connected with the golden ratio 

Let � denote the golden ratio, i.e. � =
��√�

�
≈ 1.618034 and let �� ≔

��√�

�
≈ 

≈ −0.618034. 
 

Theorem 4. The following golden ratio type inequalities hold: 

1. 

0.12 > �	�
 ≔
�	� + 1
�	� + 1
 − ���� ≥ 0 

for � > 0; the equality sign is attained  for � = � only. The function � is increas-
ing on interval [�, ��] and decreasing on each of the intervals (0, �) and (��, ∞), 

where �� ≈ 3.90023 (see Fig. 1). We note that 

max��	�
: � > �� = �(��) ≈ 0.119584. 

2. The function 

�	�
 ≔
� + 1� + 1

− ����
��  
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is increasing on each of the intervals (0, ��) and (�, ∞), and decreasing on 

interval (��, �), where �� ≈ 0.214714. We note that �	�
 = 0 and 

max��	�
: 0 < � < �� = �(��) ≈ 0.44637. 

3. The function 

ℎ�	�
 ≔ � − �� − arccos
1� + arccos

1�� 
is decreasing on (1, ��) and increasing on (��, ∞). 

Moreover, we have ℎ����� = 0. 

4. Let us set 

�	�
 ≔ ln
� + 2� + 2

− arctan
� − ��� + 1

, 

for � ∈ 	−2, ��
 ∪ 	�� , ∞
, and 
�	�
 ≔ ln

� + 2�� + 2
− arctan

� − ����� + 1
, 

for � ∈ 	−2, �
 ∪ 	�, ∞
. Then the function �(�) is increasing on each of 

intervals (−2, ��) and (�, ∞), and decreasing on interval (�� , �). On the other 
hand, the function �(�) is increasing on each of the intervals (−2, ��) and 	�, ∞
, and decreasing on 	�� , �
. Furthermore we obtain 

�	�
 = �	��
 = 0, 

lim
�→���

�	�
 = ln
�� + 2� + 2

−
�
2

= ln �1

2
(3 − √5)� −

�
2

≈ −2.53322, 

lim
�→���

�	�
 = ln
�� + 2� + 2

+
�
2

= π − 2.53322 ≈ 0.608373, 

�� + 2� + 2
=

√5

3� + 1
, 

lim
�→��

�	�
 = ln
� + 2�� + 2

−
�
2

= ln �1

2
(3 + √5)� −

�
2

≈ 2.53322, 

lim
�→��

�	�
 = ln
� + 2�� + 2

+
�
2

= ln �1

2
�3 + √5�� +

�
2

≈ −� + 2.53322 ≈ −0.608373. 

Moreover, if � ∈  0, � − ��! = [0, √5] then (see Figs. 2-4) 
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�	�� + �
 + �	� − �
 = 

= ln�5 + √5� − ��� − ln 5 − arctan �� √5 − �� � − arctan ��� √5 − �� � = 

= ln�5 + √5� − ��� − ln 5 − arctan " �(√5 − �)�� + �√5 − ���# 
and the minimum of this function is attained in � =

����

�
=

√�

�
, we have 

� �1

2
� + � �1

2
� = ln

5

4
− arctan

1

2
≈ −0.240504057. 

 

 

Fig. 1. Plot of the function �(�) 

 

Fig. 2. Plot of the function ���� 
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Fig. 3. Plot of the function ���� 

 

Fig. 4. Plot of the function ���� + �� + ��� − �� in the interval 	√�
�
− 2,

√�

�
+ 2
 

(the domain of this one is equal to (√5�� ,√5�)) 

Proof. We consider the following functions: 

��	�
 ≔ � − ln	�� + �
,			� ∊ 	0, ∞
, 

��	�
 ≔ 	� + 1
��
�,			� ∊ 	0, ∞
, 

��	�
 ≔ ln	� + 2
 + arctan
1� ,			� ∊ 	0, ∞
. 

Computing derivatives of these functions we obtain 

���	�
 =
�� − � − 1�� + � =

(� − ��)(� − �)�(� + 1)
, 

��
� 	�
 =

�� − � − 1�� ��
� =

	� − ��
	� − �
�� ��
�, 

���	�
 =
�� − � − 1	� + 2
	�� + 1
 =

	� − ��
	� − �
	� + 2
	�� + 1
. 
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Moreover, 

ℎ�
� 	�
 =

�� − �� − 1��√�� − 1���√�� − 1 + 1� =
	�� − ��
�� − ����� + �����√�� − 1���√�� − 1 + 1� . 

It is easy to check that the function ��	�
 is decreasing on (0, �) and is increasing 
on (�, ∞), so we have ��	�
 ≥ ��(�) for � > 0 which is equivalent to the inequal-

ity �	�
 ≥ 0 for � > 0 (the equality sign is attained here only for � = �). 
By numerical calculations, we proved that the function �(�) is increasing on inter-
val [�, ��] and decreasing on intervals (0, �) and (��, ∞), where �� ≈ 3.90023. 

Similarly as ��	�
, also ��(�) is decreasing on (0, �) and is increasing on (�, ∞), 
so we obtain 

	� + 1
��
� ≥ 	� + 1
��

�, � > 0, 

i.e. � + 1� + 1
≥ ����

�� . 

We have ��	�
 =
�

�� −
�

�� ����
�� . By numerical calculations we proved that the func-

tion �	�
 is increasing on intervals (0, ��) and (�, ∞), and decreasing on interval 

(��, �). The function ℎ�	�
 is decreasing on (1, ��) and increasing on (��, ∞). 

Hence, function ℎ�(�) has a local minimum at the point �� which is equal to 
ℎ����� = 0. 

 

Corollary 5. By item 1, the following inequality holds 

1 +
(� − �)(� + 1 + �)�(� + 1)

≥ ���� , � > 0. 

In equivalent form, we obtain 

 ln	1 + $ − 	2�� + 1
$�
 ≤ $,			$ > −�. (5) 

Proof. We have 

� − ln	�� + �
 ≥ � − ln(�� + �), 

i.e. 

� − � ≥ ln �1 +
	� − �
� + (2� + 1)(� − �)

2� + 1
� , 

which implies (5) for $ ≔ � − � since �� = � + 1 and 
�

����
= −(2�� + 1). 
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Corollary 6. By item 2, the following inequality holds 

1 − % ≥ � �
����, % <

1�. 

Corollary 7. By item 3, the following inequality holds 

� − �� ≥ arcsin
1�� − arcsin

1� , � ≥ .1 

More precisely, the function 

ℎ�	�
 ≔ � − �� − arcsin
1�� + arcsin

1� 
is decreasing on interval (1, ��) and increasing on interval (��, ∞). 

 

Remark 8. Closely connected to the golden ratio is the so-called Perrin constant &� 
defined to be the only real zero of the so-called Perrin polynomial (see [9-11]) 

'	�
 ≔ �	 − � − 1 = (� − &�) �� −
��&� �
���� +

��&� ��
��, 

where 

Ψ ≔ arcsin �1

2
(&�	� , √18

	 &� = (9 + √69
	

+ (9 − √69
	

, 

��&� �
� =
1

2√18
	 )−(9 + √69

	

− (9 − √69
	

+ �√3 �(9 + √69
	

− (9 − √69
	 �*, 

and &� ≈ 1.324717957244746. 
In relation to inequalities 

�	�
 ≥ �	�
 = 0,			� ≥ �, 
and 

�	�
 ≤ �	��
,			� ∊ (−2, ��) 

from point 4 of Theorem 4, we are interested in the equivalent of these inequalities 

for the Perrin constant &�, i.e. the inequalities of the type 
+	�
,��-+	&�
, � ∈ 	., /
, &� ∈ 	., /
, 
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where 

+	�
 = +(�; �, 0, 1) = ln�±�	� + �
� − arctan
0� + 1. 

Since we have 

+�	�
 =
2�	 + 	� + 0 + 41
�� + �2�1 + �0 + 2	0� + 1�
�� + �(0� + 1�)�(� + �)(	� + 1
� + 0�)

 

so we are interested when the following system of equations hold: 

 2 � + 0 + 41 = 0,

2�1 + �0 + 2(0� + 1�) = −2,�	0� + 1�
 = −2,

3 	⇔ 2 � = −0 − 41,0� − 601 − 61� = −2,0	 + 410� + 01� + 41	 = 2,

3 (6) 

which implies that 0 is a real solution of the following equation 
−368 − 720� + 516�� − 1440�	 + 1836�� + 1445�� = 0 

i.e. 0 ≈ −0.3293532687 or 0 ≈ 0.84778730534. 

Finally, by numerical calculations we get precisely two triplets of real numbers 

being the solution of system (6): 

1) � ≈ −2.790347073, 0 ≈ −0.3293532687, 1 ≈ 0.779925085, 
2) � ≈ −2.334186207, 0 ≈ 0.8477873053,				1 ≈ 0.371599725. 
For these solutions we can deduce the following inequalities: 

A) the first collection of five inequalities for the first triple (a, b, c) of solutions 
(see Fig. 5) 

Λ	�
 > 0	for � ∈ (0.298336 … , 2.41697 … ), 

where 

Λ	�
 ≔ ln�−�	� + �
� − arctan
0� + 1 , � ∈ 	0, −�
, 

and 

Λ	�
 < 0 for � ∈ 	0, 0.298336 … 
 ∪ 	2.41697 … , −�
, 

Λ	�
 > � − &�	for � ∈ (0.0727841 … , 1.94339 … ), 

Λ	�
 < � − &�	for � ∈ 	0, 0.0727841 … 
 ∪ 	1.94339 … , −�
, 

ln � �	� + �
&�(&� + �)
� ≤ arctan

0� + 1 − arctan
0&� + 1 = arctan

0(&� − �)	� + 1
	&� + 1
 + 0�, 
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for � ∈ (0, −�) and where the equality sign is taken only for � = &�. 
The function 

Λ�	�
 ≔ ln �−
�	� + �
&�	&� + �
� − arctan

0(&� − �)	� + 1
	&� + 1
 + 0�, 

is increasing on (−�, ∞), Λ�	�
 = 0 ⇔ � ≈ 3.40586. Moreover, Λ�(�) is 

decreasing on two intervals 
−∞, �� = −
��

�
��
− 1� and 	��, 0
, and 

lim
�→�


�
Λ�	�
 − lim

�→�

�

Λ�	�
 = �, 

Λ�	�
 > 0, � ∈ 	−∞, ��
, 

Λ�	�
 < 0, � ∈ 	��, 0
; 

B) for the second triple (a, b, c) of solutions similar inequalities can be obtained, 

however, due to the volume of the paper, they will be omitted. 

 

 

Fig. 5. Plot of the functions � − �� and  Λ(�) for the first triple (
, �, �) - on the left, 
and for the second triple (
, �, �) - on the right 

4. Conclusions 

In the paper certain inequalities connected with the golden ratio and the 

Fibonacci numbers are discussed. We were able to accomplish the intended overall 

goal of the paper, even with some excess (see in particular the results of point 4 of 

Theorem 4). Generalization from Remark 8 connected with the Perrin’s polynomial 

and constant is quite natural and in fact well-defined, but did not completely fulfill 

our expectations of aesthetic nature. We believe that the research subject matter 

indicated in this paper is still open and can encourage (especially Fibomaniacs) 

for active reflection. 

 

 



Certain inequalities connected with the golden ratio and the Fibonacci numbers 15

References 

[1] Dunlop R., The Golden Ratio and Fibonacci Numbers, World Scientific, Singapore 2006. 

[2] Vajda S., Fibonacci and Lucas Numbers, and the Golden Section Theory and Applications, 
Dover Publications Inc., New York 2008. 

[3] Hoggatt V.E., Fibonacci and Lucas Numbers, The Fibonacci Association, Santa Clara 1979. 

[4] Mongoven C., Sonification of multiple Fibonacci-related sequences, Annales Mathematicae 
et Informaticae 2013, 41, 175-192. 

[5] Wituła R., Słota D., Hetmaniok E., Bridges between different known integer sequences, Annales 
Mathematicae et Informaticae 2013, 41, 255-263. 

[6] Słanina P., Generalizations of Fibonacci polynomials and free linear groups, Linear and Multi-
linear Algebra, DOI: 10.1080/03081087.2015.1031073. 

[7] Herz-Fischler R., A “very pleasant” theorem, College Mathematics Journal 1993, 24, 4, 
318-324. 

[8] Chern S., Cui A., Fibonacci numbers close to a power of 2, The Fibonacci Quarterly 2014, 52, 4, 
344-348. 

[9] Hetmaniok E., Wituła R., Lorenc P., Pleszczyński M., On an improvement of the numerical 
application for Cardano’s formulae in Mathematica software (in review). 

[10] Wituła R., Lorenc P., Różański M., Szweda M., Sums of the rational powers of roots of cubic 
polynomials, Zeszyty Naukowe Politechniki Śląskiej, Seria Matematyka Stosowana 2014, 4, 
17-34. 

[11] Dubickas A., Hare K.G., Jankauskas J., There are no two nonreal conjugates of a Pisot number 
with the same imaginary part, arXiv:1410.1600v1 [math.NT]. 


