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Abstract   

The article deals with fluid motion along an infinite hose. Taking into consideration the Stokes equation, 

the tangential friction stresses according to Newton and the Reynolds equation, the differential equation of the 

velocity change in radius is developed taking into account the pulsating component of the friction forces in the 

turbulent flow. Turbulence is defined as the impulse component of a flow, characterized by a pressure drop 

along a dynamic length of flow, a frequency response, and an oscillation amplitude of the pressure drop of 

pulse (which is given by the time equation of the oscillation). The velocity distribution along the radius of the 

hose in the time interval of one second was modelled for pressure drops in the range from 6000 to 18000 Pa 

and the amount of transported medium in the range from 1.667·10-5 to 6.667∙10-5 m3, which corresponded to 

the length of pulse plug. The dynamic viscosity of the medium (milk) of 1.79 ∙ 10-3 Pa∙s and its density of 10273 

N·s2/m4 were accounted at the simulation. The developed analytical dependence of the velocity of the forced 

turbulence of the pulsating flow allows to calculate the absolute value of the velocity at a given point of cross-

section of the pipeline, and characterizes the physical process of flow of Newtonian fluids and gases in the 

pipeline. 
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1. INTRODUCTION   

  

In the problems of automation of complicated 

technological processes that ensure the adaptation of 

systems of different origin, the problem of analytical 

identification of process parameters arises. Such 

systems contain processes that are influenced by 

several factors simultaneously and lead to changes in 

the process characteristics. In particular, the 

pulsating fluid flow caused by the equipment 

operating mode is considered in the work, namely 

impulse change of pressure in technological and 

technical pipelines of automation systems, milk 

transport by milking machine and a number of other 

technical systems operating at critical modes with 

high frequency of change. The pulsating mode of 

motion creates "forced" turbulence. To determine the 

quantitative characteristic (production or 

effectiveness) and qualitative process parameters 

(flow mode, intensity), it is necessary to have a 

characteristic of velocity distribution. A simpler case 

– the pipeline is rigid and the more complicated 

process – the pipeline is flexible.  

Therefore, the elastic pipeline – the milk hose of 

the milking machine is chosen, which is relevant to 

adapt the work of the technical system to the 

physiological requirements of the cow's milk 

ejection.  

The task of turbulent flows research including 

forced turbulence based on external disturbances is 

complex, and often researchers use a number of 

assumptions and use numerical methods to solve 

them.  

Authors T. S. Lee, X. Liu, G. C. Li and H. T. Low 

used the numerical simulations by the finite-volume 

method of second-order based on a disordered non-

orthogonal net for laminar sinusoidal pulsating flow 

in a tube with smooth single narrowing. At that they 

studied the effects of the Reynolds number, the 

Womersley number, the ripple amplitude, the 

narrowing factor, the narrowing length and fluid 

flow in the narrowed tube [1]. 

To develop analytical models, both laminar and 

turbulent flows, it is necessary to analyse and 

mathematically describe the process of 

transportation of the test medium – single-phase or 

two-phase Newtonian gas-liquid medium. The stable 

flow in the tube, determined by the Reynolds 

number, has been sufficiently studied today and also 

the scenario of its study has been developed [2, 3, 4]. 

In contrast to the steady flow, the amplitude and 

frequency of the flow pulsations expressed by the 

Womersley number must be determined in addition 

to the Reynolds number. However, the analysis of 

the above studies showed that these are experimental 

studies only that are not described by regression 

dependencies and its reproducibility is a difficult 

task.   

In mechanics of biological fluid authors studied 

for which the Reynolds and Womersley numbers and 

ripple amplitudes the flow are transformed into 

turbulent [5]. 

Also, during studies of forced pulsating flow, the 

time shift in the flow response to the applied 

oscillation amplitude was determined [6]. 

Some researchers for the analysis of pulsating 

turbulent flows select the Fourier series to the 
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average values of the average and turbulent 

velocities, or other parameters that characterize the 

flow. Similarity parameters for the correlation of 

studied results were defined to comprehend, or at 

least to classify, how the amplitude and phase of 

these Fourier series depend on the time-averaged 

flow rate, Reynolds number and pulse rate. And also 

the time-averaged volumetric velocity, pipe line 

diameter, kinematic viscosity and frequency of the 

forcing are indicated respectively [7]. Stokes laminar 

length serves as an etalon for comparison. Therefore, 

it is used for comparison with the laminar pulsating 

flow and as a value for scaling. 

Previous studies have shown that many values 

were scaled with the Stokes-Reynolds number, 

which is equivalent to the normalized angular 

frequency [8, 9, 10]. 

By definition the Stokes length is a purely 

laminar concept. Therefore, in order to account the 

diffusivity of impulse in turbulent flows, Scotti A. 

and Piomelli U. introduced the concept of Stokes 

turbulent length [11]. 

In particular, He S. and Seddighi M. used direct 

numerical simulation (DNS) in order to model the 

accelerated flow in a channel with a stepwise change 

in flow velocity and is not a pulsating flow [12]. 

These authors also showed that the ratio of the initial 

to the final Reynolds numbers characterizes the 

behavior of the transition stream. But the temporal 

data from pulsating flows are sparse, where the large 

eddy simulation (LES) given in [11] and the DNS in 

[13] are two exceptions. Comparison of the 

turbulence response predicted by the LES during the 

phase of eddy acceleration with the results of the 

linear accelerated DNS [14] shows a high similarity 

between the two cases. The initial turbulence 

response consists of velocities varying along the 

flow in conditions increase of flow strip, and 

subsequently after the initial delay, turbulence 

increases rapidly as a result of the formation and 

confluence of turbulent flow areas [15]. 

Qualitatively, such a development of turbulence 

in a pulsating flow can be deduced from the 

fundamental regime by the Fourier series by 

calculating the phase difference between the 

averaged parameters of the forced turbulent pulse 

oscillations. But all analyzed researchers did not 

investigate the nature of velocity distribution and 

velocity as a major parameter. They also practically 

did not analytically describe the dependence of 

velocity parameters on the factors that influence the 

formation of forced turbulence. 

 
2. ANALYTICAL MODEL OF FORCED 

TURBULENCE 

 

2.1. Theoretical assumptions for forced 

turbulence beginning 

 

One of the main parameters affecting the flow 

dynamics is the velocity, which depends on many 

factors, namely the intensity of the flow, the pressure 

drop in the hose, the linear dimensions of the hose, 

the characteristics of the medium, the frequency and 

amplitude of external disturbances in the flow of the 

medium [16, 17].  

Let me consider a model of the state of a moving 

medium by using functions that determine the 

velocity distribution of a liquid mixture in the 

longitudinal and cross sections of the hose of 

v = f(X, Y, Z, t) and two dynamic parameters, such as 

p = f (X, Y, Z, t) pressure and the density of the liquid 

mixture of ρсум= f(X,Y,Z,t). As it is known, all 

dynamic parameters are determined by the values of 

two of them by means of the equation of state of the 

medium. Therefore, the motion of the liquid mixture 

was determined completely with specifying of five 

quantities: three components of v velocity, p pressure 

and ρсум density.  

These parameters are functions of X, Y, Z 

coordinates and t time. Let us suppose that 

v = f (X, Y, Z, t) is the velocity of the liquid mixture 

at each point of X, Y, Z of space at time of t, (it refers 

to specific points of space, not to fluid particles that 

move at time in space). We also take such 

assumptions to the parameters of р and ρр. With 

taking into account that the liquid mixture consists 

of liquid and air, and the condition of the air velocity 

is higher than the fluid velocity, the density of this 

such mixture will vary along the length of the hose 

(along the X axis), and thus the two-phase mixture 

can be considered as non-compressed.  

 
2.2. Development of the analytical model of 

turbulent motion 

 
The fluid motion along an endless hose is 

considered. Axis system is positioned so that the X 

axis is directed along the axis of the hose. The 

equality of 0V = =  are assumed, and the velocity 

component depends only on R radius. The pressure 

is considered constant throughout the space, 

respectively the laminar sublayer is in the immediate 

vicinity of the wall. For this case, the Stokes 

equation are used in the following form 

             0=
dR

dU

dR

d T ,                      (1) 

after integrating of formula 1, we will get 

 ==









−

C
dR

dU

rR

Т

0

,              (2) 

where τω – tangential stress of friction by Newton. 

After the second integration, value of the UT 

speed will be   

1CRUТ +=



.                      (3) 

The C1 constant of integration is determined from 

the initial conditions, for R = r0 , UT = 0, on the wall 

the velocity will be zero and, accordingly, for the 

laminar flow velocities are linearly distributed: 



DIAGNOSTYKA, Vol. 21, No. 1 (2020)  

Dmytriv V.: Model of forced turbulence for pulsing flow 

 

91 

RUТ =



.                      (4) 

For the profile of velocities under the turbulent 

mode of motion the Reynolds equation [18] was 

applied, respectively after assuming that all flow 

parameters are independent of the X ordinate. With 

the appropriate corrections, we obtain the following 

equation: 

( ) 0=







−+ VU

dR

dU

dR

d
Tp

T  ,        (5) 

where UТ - pulsating velocity along the Х axis; 

V - pulsating velocity in direction of R radius; 

оr 

0=







+ 

dR

dU

dR

d T
,           (6) 

where  𝜏 = −𝜌𝑝 ∙ 𝑈𝑇 ∙ 𝑉̅̅ ̅̅ ̅̅ ̅̅  

After integration over R we get 

2C
dR

dUT =+  .                 (7) 

Under boundary conditions, when
0R r= → 0 =

, the permanent of integration will be: 

0

2
rR

T

dR

dU
C

−

==  , 

accordingly, the equation of (7) will take the form of: 

 =+
dR

dUT
.                   (8) 

In (8) equation, the stress of viscous friction will 

be quite large in the immediate vicinity to the hose 

wall. The stress of turbulent friction near the wall 

will be small. To study the velocity profile in the 

turbulent area, let us consider the case when the 

following condition is satisfied: 

      
dR

dUT  .                (9) 

Then with taking into account of (8) equation we 

will get: 

VUTp −==   .            (10) 

By analogy with viscous friction, the turbulent 

stress can be written in the form of: 

dR

dU
K

dR

dUA

dR

dU
A T

p
T

p
p

T === 


 ,  (11) 

where А and K - analogues of absolute and kinetic 

coefficients of turbulent transfer. 

We reduce the equation of (11) to a form that is 

convenient for practical use, assuming, by analogy 

with viscous friction, that the value of turbulent 

friction depends on the  
𝑑𝑈𝑇

𝑑𝑅
 velocity gradient. It 

follows from equations of (8) and (11) that the value 

of turbulent friction is a function of the R distance 

from the wall of the hose and depends on the ρp 

density of liquid. Let us assume that 

3
2

1 X
pr

X
TХ

p l
dR

dU









−=  ,       (12) 

where lpr – the length of interfusion. 

After applying the method of substitution of 

dimensions, we will get the following expression  

[
kg ∙ m

s2 ∙ m2
] = [

kg

m3
]

Х1

∙ [−
1

s
]

Х2

∙ [m]Х3.         (13)  

Accordingly, we obtain a system of equations 

{

Х1 = 1 →  𝑓𝑜𝑟 kg                    
−1 = −3 ∙ Х1 + Х3 → 𝑓𝑜𝑟 m

−2 = −Х2  →  𝑓𝑜𝑟  s              
         (14) 

The solution of (14) equation gives the following 

values of powers: X1 = 1; X2 = 2; X3 = 2. 

Accordingly, the equation of the turbulent stress 

of friction will have the form 

2
2









==

dR

dU
l T
prp  .           (15) 

It is convenient to replace the transference length 

with an expression of lpr = Ka ∙ R. 

Therefore, due to forced turbulence, which is 

characteristic for the pulsating nature of the transport 

of the liquid-air mixture, between the layers there 

will be both turbulent and laminar stress of friction. 

In view of (15) equation, the stress of friction 

between the layers is written as follows: 

( )
2

2








+=

dR

dU
RKa

dR

dU T
р

T  .      (16) 

where  
dR

dUT  - viscous friction by I. Newton, 

which corresponds to the forces of friction in the 

laminar flow; 

 ( )
2

2










dR

dU
RKa T

р - the pulsating 

component of the friction forces in a turbulent flow. 

After solving of (16) equation with regard to 

dUT / dR, we will get:    

22

222

2

4

RKa

RKa

dR

dU

p

pТ



+−
=




.     (17) 

In view of 2
*Vр =   and integrating over R, 

we will get:    

CR
VKa

R
Ka

V

R
VKa

RKa

V

RKa
U

р

р

р

T

+
















+


+

+










=

+

+

+

+

2

222

2

2

222

2

2

4
ln

4

1

2














, (18) 

or  

𝑈𝑇 =
𝜇

2 ∙ 𝜌𝑝 ∙ 𝐾𝑎2 ∙ 𝑅
∓

𝑉∗

𝐾𝑎 ∙ 𝑅
× 
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× √
𝜇2

4 ∙ 𝜌𝑝
2 ∙ 𝐾𝑎2 ∙ 𝑉∗

2
+ 𝑅2 ±

𝑉∗

𝐾𝑎
×         (19) 

× asinh (𝑅 ∙ √
4 ∙ 𝜌𝑝

2 ∙ 𝐾𝑎2 ∙ 𝑉∗
2

𝜇2
) + 𝐶,  

where 𝑉∗ – the dynamic velocity on the wall of the 

hose;  

       R – the distance from the wall of the hose to the 

point of determining the velocity;  

      С – the constant of integration. 

The C constant of integration is determined from 

the initial conditions. 
T CTU U V = =   is on the 

wall of the hose at R = 0. After substituting of R = 0 

into the denominator of the items of (18) equation, 

we will get that they go to infinity, which contradicts 

the initial conditions. Therefore, we will get the 

following value for the C constant of integration: 

𝐶 = 𝛼 ∙ 𝑉∗ .                       (20) 

After substitute of C into (19) equation, we will 

get the following dependence for determining the 

turbulent velocity distribution: 

             𝑈𝑇 =
𝜇

2 ∙ 𝜌𝑝 ∙ 𝐾𝑎2 ∙ 𝑅
∓

𝑉∗

𝐾𝑎 ∙ 𝑅
× 

× √
𝜇2

4 ∙ 𝜌𝑝
2 ∙ 𝐾𝑎2 ∙ 𝑉∗

2
+ 𝑅2 ±

𝑉∗

𝐾𝑎
×       (21) 

       × asinh (𝑅 ∙ √
4 ∙ 𝜌𝑝 ∙ 𝐾𝑎2 ∙ 𝑉∗

2

𝜇2
) + 𝛼 ∙ 𝑉∗ . 

  The thickness of the boundary layer can be 

determined from equation of [16]: 

*
*

l
V

p

p
c ===


= 














 ,    (22) 

where α - the Landau constant;   

        

p

V


=*
- the dynamic velocity;  

        
*

*
V

l


=  - the dynamic length. 

In the hose the π·ro
2·∆p moving force acts on the 

entire cross section of the fluid flow. This force is 

aimed at overcoming of wall friction. Since the ratio 

of the friction force to the unit of wall area is 

𝜏 =  𝜌𝑝 ∙ 𝑉∗
2, the total friction force is 2 ∙ 𝜋 ∙ 𝑟0 ∙ 𝑙𝑝𝑟 ∙

𝜌𝑝 ∙ 𝑉∗
2. Taking into consideration the expressions of 

forces, we will get: 

0

2
*

2

r
V

l

P
p

pr

=


 .                   (23) 

Equation of (23) determines in a parametric form 

the relationship of the velocity of the fluid in the hose 

with the pressure drop in it (V  parameter). 

From (23) equation it follows that 

  

pprl

rP
V




=

2

0
* .                   (24) 

After substitute of (24) equation into (21) 

equation and change of R = r0 - r1 and 

 , we will get:    

𝑈𝑇 =
𝜇 ∙ (𝑟0 − 𝑟1)−1

2 ∙ 𝜌𝑝 ∙ 𝐾𝑎2
∓

(𝑟0 − 𝑟1)−1

𝐾𝑎
∙ √

Δ𝑝 ∙ 𝜋 ∙ 𝑟0
3

𝑄 ∙ 𝜌𝑝

× 

× √
𝜇2 ∙ 𝑄

4 ∙ 𝜋 ∙ 𝜌𝑝 ∙ 𝐾𝑎2 ∙ Δ𝑝 ∙ 𝑟0
3 + (𝑟0 − 𝑟1)2 ± 

±√
Δ𝑝 ∙ 𝜋 ∙ 𝑟0

3

𝑄 ∙ 𝐾𝑎2 ∙ 𝜌𝑝

∙ asinh ((𝑟0 − 𝑟1) ×        (25) 

∙ √
4 ∙ 𝜌𝑝 ∙ 𝐾𝑎2 ∙ Δ𝑝 ∙ 𝜋 ∙ 𝑟0

3

𝜇2 ∙ 𝑄
) + 𝛼 ∙ √

Δ𝑝 ∙ 𝜋 ∙ 𝑟0
3

𝜌𝑝 ∙ 𝑄
 , 

where ∆P – the pressure drop, Pа; 

ro – the radius of hose, m; 

r1 – the length from hose center to point of 

velocity determining, m; 

ρp – the density of liquid, N·s2/m4; 

lpr – the length of the impulse plug of the 

transport medium in the hose, m; 

Q – the quantity of medium corresponding to the 

length of the impulse plug, m3; 

Ka – the Karman constant; 

α – the Landau constant; 

 – the dynamic viscosity of the liquid, Pа  s.  

The derived equation of (25) is characterized by 

the velocity distribution in the hose (pipeline) taking 

into account the laminar boundary layer.  

 

3. RESULTS OF SIMULATION OF 

VELOCITY OF PULSING TURBULENT 

MOTION   
 

Velocity distribution by hose radius in the time 

interval of one second was simulated at the 

conditions of the ∆P pressure drop and the Q 

medium quantity of the  dynamic viscosity that 

correspond to the pulse length in the hose of r0 

radius. To experimental study following parameters 

were taken: dynamic viscosity of the medium was 

 = 1.79∙10-3 Pa∙s for milk, milk density was 

ρp = 10273 N·s2/m4, Landau constant was α = 11.5, 

Karman constant was Ka = 0.41, hose radius 

r0 =  0.008 m. The ∆p pressure losses ranged from 

6000 to 18000 Pa, and the Q quantity of milk ranged 

from 1.667·10-5 m3 to 6.667∙10-5 m3, which 

corresponded to the length of the pulse plug.  

The results of the simulation in one second 

interval are shown on Fig. 1-3.  

Fig. 1 shows the 3-D models of the velocity 

distribution over the diameter of the hose in the 

interval of one second cycle of the impulse plug of 

the mixture flow.  

Fig. 2 and 3 represent in the plane the UT velocity 

change of the pulsating flow and the UT maximum 

velocity in t time and over the r0 radius of the hose. 

 

)2(
2

0rQl pr = 
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a 

 
 

Fig. 1. 3-D model of change of the UT velocity of 

pulsatory flow over the t time and r0 radius by the 

parameters of ∆p pressure lost and Q quantity of liquid 

that corresponds with the length of the impulse plug:  

а - ∆p = 10 KPa, Q = 1.667·10-5 m3; 

b - ∆p = 18 KPa, Q = 6.667∙10-5 m3 

 

 
 

Fig. 2. Representation of change of UT  velocity of 

pulsating flow and UT maximum velocity in t time and 

over the r0 radius of the hose for ∆p = 10 KPa pressure 

losses and Q = 1.667·10-5 m3 quantity of liquid 

corresponding to length of the impulse plug 

 

 

 

 
 

Fig. 3. Representation of change of UT  velocity of 

pulsating flow and UT maximum velocity in t time and 

over the r0 radius of the hose for ∆p = 18 KPa pressure 

losses and Q = 1.667 · 10-5 m3 quantity of liquid 

corresponding to length of the impulse plug 

 

The time of one cycle of flow impulse plug was 

one second. The pulse character was set as close as 

possible to the mode of operation of the milking 

machine pulsator, the frequency was 1 Hertz, the off-

duty factor was ranged from 30 to 70%. The 

character of the oscillation can be represented as 

Fourier series or impulse response [19]. 

The maximum speed is in the centre of the flow. 

In particular, at ∆p = 10000 Pa pressure losses  and 

the Q = 1.667 · 10-5 m3 amount of milk flow the 

pulse rate in the centre of the hose was UT = 9.67 m/s 

on 0.76 second of the cycle of pulse plug of milk 

flow (Fig. 1a and 2).  

At the ∆p = 18000 Pa pressure losses  and the 

Q = 1.667 · 10-5 m3 amount of milk flow the pulse 

rate in the centre of the hose was the UT = 6.47 m/s 

on 0.76 second of the cycle of pulse plug of milk 

flow (Fig. 1, b and 2). 

 

4. APPLICATION AND INTERPRETATIONS 

 

In order to understand the use of the model of 

forced turbulence of a pulsating flow in this section, 

the application of the results in the diagnosis and 

measurement of the milk flow velocity by an 

adaptive milking machine is shown. 

As an integral part of cow milking robot, the 

adaptive milking machine changes its modes 

according to the flow characteristics of milk. The 

milk flow is measured at a higher frequency than the 

frequency of the milking machine pulsator. This is 

10 Hz and above. The milk flow is pulsating and the 

frequency corresponds to the pulse frequency - 1 Hz. 

The nature of the milk flow corresponds to the 

graphical model on Fig. 1. To measure the 

parameters of milk flow, a thermometer is designed 

to measure both the velocity and quantity of milk 
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[20]. The measured velocity of milk flow 

corresponds to the real time mode, the time constant 

of measurement is 10 milliseconds. 

The rate of milk ejection by the animal 

corresponds to the milk flow velocity in the milk 

hose. The milking machine is adapted by the 

parameter of the milk flow velocity. Based on 

information about the quantity of milk per milking 

cycle and the running value of the vacuum, the 

processor calculates the milk flow velocity by 

dependency of (25). 

The scheme of the thermoanemometric 

measuring device for the automated milking 

machine is shown on Fig. 4 [18]. 

 

  
 

Fig. 4. Block scheme of the thermoanemometric 

measuring device of the pulsating flow of a two-phase 

medium: 1 – body; R1, R2 – thermistor elements; R3, R4, 

R5 – resistors of bridge circuit;  2 – alternating current 

amplifier; 3 – phase detector; 4 – null device; 

5 – electronic key; 6 – bus-bar  former; 7 – reference 

generator;  8 – power conditioner; 9 – high frequency 

pulser; 10 – rectangular oscillation generator, 

11 – control unit 

 

The ratio between the number of pulses 

(information constituent about milk ejection) at the 

exit from bus-bar former and the (UT) milk flow 

velocity is evaluated by the formula of [18]: 

( ) Tsk
skонhfp

і US
SРР

KА
N 

−


= 


,        (26) 

where Ssk  · UT · Δτ = qf.i - characterizes the milk 

output for the Δτі time interval, m3; 
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R10, R20 – accordingly, the resistance of the 

thermoresistive elements for a balanced bridge 

scheme at the t0 cooling temperature, Ω; 

t1, t2 – accordingly, the temperature of heating of 

R1, R2 thermoresistive elements, 0С;  

α – the temperature coefficient of material 

resistance of the thermoresistive elements, 0С-1; 

K – the aspect ratio; 

РН – the output power of the 10 generator of 

rectangular oscillations at the amplitude of the 

output voltage of the heating UН (fig. 5,d), W;   

РО – the output power of the generator of 

rectangular oscillations 10 at the amplitude of the 

output voltage UО (fig. 5, d) in the mode of "cooling" 

of the elements, W; 

он  += , or (from the fig. 5, c, d) 

1−−= іі   -  time interval of one cycle of 

operation of the circuit (heating-cooling of 

thermoresistor elements), s; 

ΔτН – the duration of heating of thermistor 

elements during one cycle of automatic operation of 

the circuit (heating-cooling) (fig. 5, b, d), s;  

Δτ0 – the duration of “cooling” of the thermistor 

elements, с; 

Ssk – the cross-sectional area of milk flow, m2; 

Set – the cross-sectional area of thermoresistive 

element, m2. 

 

 
     
Fig. 5. Work diagrams of thermoanomometric counter of 

the pulsating flow measuring device of a two-phase 

medium: a) qп milk ejection; b) Δt1 and Δt2 superheat 

temperature of thermistor elements; c) output voltage of 3 

phase detector and input voltage of 4 null device; 

d) supply voltage of bridge circuit from the 10 square 

oscillation generator; e) characteristic of the output 

voltage of 5 electronic key 

 

The figure 6 represents dependence of the Nі 

number of impulses and the q intensity of milk 

ejection.  

 

 
 

Fig. 6. Dependence of the Nі number of impulses of the 

measurement scheme of the thermoanemometric 

measuring device on the intensity of q milk ejection 

 

The high-frequency pulse generator operates at 

the frequency of 12 kHz, and the Δτhfp = 83.3 μs 

accordingly. The time interval of one work cycle of 

"heating-cooling" of the thermistor elements circuit 

is Δτ = 1 s. 

Knowing the flow velocity, such as milk in a 

milking machine, under forced turbulence (the mode 

of motion is pulsating according to the operation of 
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the pulsator), after integrating this parameter with a 

frequency of 100 Hz and above, the type of milk 

ejection of an animal is obtained, characterizing the 

intensity of milk ejection [17]. According to the 

intensity of animal’s milk ejection we can operate by 

the milking robot or the adaptive milking machine. 

This is one of the examples of the application an 

analytical model of the forced turbulence of a 

pulsating flow for the diagnosis and measurement of 

kinetic and quantitative characteristics of the flow of 

complex fluids.  

 

5. CONCLUSIONS 

 

The developed analytical dependence of the 

velocity of the forced turbulence of the pulsating 

flow allows to calculate the absolute value of the 

velocity at a given point of cross-section of the 

pipeline. The deduced representation of (25) 

equation characterizes the influence of the 

parameters of the transported medium, dynamic 

viscosity and density of the medium, dynamic length 

of pulse plug (due to the amount of medium) and the 

design parameters of the pipeline (radius) on the 

velocity impulse. The dynamic characteristics of the 

flow are taken into account by the pressure drop 

along the length of the pulse plug of medium flow 

and by the frequency response and oscillation 

amplitude of the pulse of pressure drop, which is 

given by the time equation of oscillation.  
The boundary layer is taken into account by the 

Karman and Landau constants. 

Analysis of the results of velocity modelling 

showed that as the amount of transported medium 

increases, the flow velocity decreases. The pattern of 

the velocity change in cross-sectional diameter does 

not have pronounced parabolic distribution law. In 

the tangent plane with the boundary layer, the 

pulsating flow rate is lower by 30% than the 

maximum velocity in the centre of the pipeline. 

As the dynamic viscosity increased, the velocity 

of the transported medium decreased. 

The developed dependence describes the 

physical process of Newtonian fluid and gas flows in 

a pipeline.  

This analytical dependence describes the 

physical process of hydrodynamics of forced 

turbulence from the standpoint of applied mechanics 

for Newtonian mediums. Further theoretical and 

experimental studies of diagnostics of the forced 

turbulence process for complex Newtonian mediums 

and the application of developed methods and 

technical systems of diagnostic will be published.  
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