PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantification of microstructural homogeneity in indium arsenide epilayers by X-ray diffraction

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
In this article a complete procedure to investigate thin semiconductor plates (epitaxial layers), including high-resolution X-ray diffraction measurements, mathematical modelling of both crystalline structure and crystalline microstructure and computations to approximate solving inverse problems, is proposed and described in detail. The method is successfully applied to estimate crystalline homogeneity of a square indium-arsenide plate epitaxially-grown on gallium-arsenide substrate. To this end, the specimen is tested in nine areas around points forming a square grid. It is demonstrated that whole specimen may be regarded as a single large crystalline grain consisting of crystallites separated by small-angle boundaries. The crystallites occur as rode-like cuboids elongated in the direction perpendicular to the plate surface, with different areas of the sample and with base sizes not much differing. The mean-absolute second-order strain is very small and almost constant in the whole sample. The first-order strain also appears and, effectively, the structure of the crystalline layer is tetragonal with unit-cell parameters being smaller parallelly and larger perpendicularly to the layer surface and varying slightly in the layer. The results are presented in tables and figures and commented.
Rocznik
Strony
231--257
Opis fizyczny
Bibliogr. 58 poz., tab., wykr., wzory
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
  • Institute of Mathematics and Cryptology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
  • VIGO Photonics S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R. (2001). Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 89(11), 5815-5875. https://doi.org/10.1063/1.1368156
  • [2] Kroemer, H. (2004). The family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E: Low-dimensional Systems and Nanostructures, 20(3-4), 196-203. https://doi.org/10.1016/j.physe.2003.08.003
  • [3] Wang, F., Chen, J., Xu, Z., Zhou, Y., Xu, Q., & Li, H. (2014). Molecular beam epitaxy growth of high quality InAs/GaSb type-II superlattices for long wavelength infrared detection. Proceedings of SPIE. https://doi.org/10.1117/12.2068276
  • [4] Rogalski, A., Kopytko, M., & Martyniuk, P. (2018). Antimonide-based Infrared Detectors: A New Perspective. SPIE Press. https://doi.org/10.1117/3.2278814
  • [5] Nie, B., Huang, J., Zhao, C., Zhang, Y., & Ma, W. (2020). Long Wavelength Type II INAS/GASB Superlattice Photodetector Using Resonant Tunneling diode structure. IEEE Electron Device Letters, 41(1), 73-75. https://doi.org/10.1109/led.2019.2953896
  • [6] Zhylik, A., Benediktovich, A., Ulyanenkov, A., Guérault, H., Myronov, M., Dobbie, A., Leadley, D. R., & Ulyanenkova, T. (2011). High-resolution x-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates. Journal of Applied Physics, 109(12). https://doi.org/10.1063/1.3597828
  • [7] Hédi, F., Mohamed Mourad, H., & Ahmed, R. (2017). High-Resolution X-Ray Diffraction of III-V Semiconductor Thin Films. In A. Alicia Esther (Ed.), X-ray Scattering. IntechOpen. https://doi.org/10.5772/65404
  • [8] Bismayer, U., Brinksmeier, E., Güttler, B., Seibt, H., & Menz, C. (1994). Measurement of sub-surface damage in silicon wafers. Precision Engineering, 16(2), 139-144. https://doi.org/10.1016/0141-6359(94)90199-6
  • [9] Herms, M., Fukuzawa, M., Melov, V. G., Schreiber, J., Möck, P., & Yamada, M. (2000). Residual strain in annealed GaAs single-crystal wafers as determined by scanning infrared polariscopy, x-ray diffraction and topography. Journal of Crystal Growth, 210(1-3), 172-176. https://doi.org/10.1016/s0022-0248(99)00673-9
  • [10] Alaydin, B. O., Tuzemen, E. S., Altun, D., & Elagoz, S. (2019). Comprehensive structural and optical characterization of AlAs/GaAs distributed Bragg reflector. International Journal of Modern Physics B, 33(08), 1950054. https://doi.org/10.1142/s0217979219500541
  • [11] Ataser, T., Demir, D., Bilgili, A. K., Ozturk, M., & Ozcelik, S. (2021). Mosaic Defects of AlN Buffer Layers in GaN/AlN/4H-SiC Epitaxial Structure. Journal of Polytechnic, 24(2), 511-516. https://doi.org/10.2339/politeknik.682649
  • [12] Benyahia, D., Kubiszyn, Ł., Michalczewski, K., Boguski, J., Kębłowski, A., Martyniuk, P., Piotrowski, J., & Rogalski, A. (2018). Electrical properties of midwave and longwave InAs/GaSb superlattices grown on GaAs substrates by molecular beam epitaxy. Nanoscale Research Letters, 13(1). https://doi.org/10.1186/s11671-018-2612-4
  • [13] Michalczewski, K., Jureńczyk, J., Kubiszyn, Ł., & Martyniuk, P. (2022). The dependence of InAs/InAsSb superlattice detectors’ spectral response on molecular beam epitaxy growth temperature. Applied Sciences, 12(2), 1368. https://doi.org/10.3390/app12031368
  • [14] Kojdecki, M. A., Ruiz de Sola, E., Serrano, F. J., Delgado-Pinar, E., Reventós, M. M., Esteve, V. J., Amigó, J. M., & Alarcón, J. (2007). Microstructural evolution of mullites produced from single-phase gels. Journal of Applied Crystallography, 40(2), 260–276. https://doi.org/10.1107/s0021889807000295
  • [15] Kojdecki, M. A., Ruiz de Sola, E., Serrano, F. J., Amigó, J. M., & Alarcón, J. (2009). Comparative x-ray diffraction study of the crystalline microstructure of tetragonal and monoclinic vanadium-zirconium dioxide solid solutions produced from gel precursors. Journal of Applied Crystallography, 42(2), 198-210. https://doi.org/10.1107/s0021889809005135
  • [16] Kojdecki, M. A., Bastida, J., Pardo, P., & Amorós, P. (2005). Crystalline microstructure of sepiolite influenced by grinding. Journal of Applied Crystallography, 38(6), 888-899. https://doi.org/10.1107/s0021889805026476
  • [17] Serrano, F. J., Montoya, N., Pizarro, J. L., Reventós, M. M., Kojdecki, M. A., Amigó, J. M., & Alarcón, J. (2013). Crystal structure and microstructure of synthetic hexagonal magnesium-cobalt cordierite solid solutions (Mg2 - 2xCo2 xAl4Si5O18). Acta Crystallographica, Section B, Structural Science, Crystal Engineering and Materials, 69(2), 110-121. https://doi.org/10.1107/s2052519213001401
  • [18] Pardo, P., Kojdecki, M. A., Calatayud, J. M., Amigó, J. M., & Alarcón, J. (2017). Crystalline microstructure of boehmites studied by multi-peak analysis of powder X-ray diffraction patterns. Powder Diffraction, 32(S1), S87-S98. https://doi.org/10.1017/s0885715617000641
  • [19] Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  • [20] Izumi, F., & Ikeda, T. (2014). Implementation of the Williamson-Hall and Halder-Wagner Methods into RIETAN-FP.
  • [21] Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., & Kumari, B. S. (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering, 04(01), 21-28. https://doi.org/10.4236/wjnse.2014.41004
  • [22] Egorov, I. N., Egorova, S. I., & Egorov, N. Ya. (2020). X-ray Diffraction Analysis by Williamson-Hall Method of Strontium Hexaferrite Lattice Features after Mechanical Milling. IOP Conference Series: Materials Science and Engineering, 969(1), 012006. https://doi.org/10.1088/1757-899x/969/1/012006
  • [23] Jabir, S. A.-A., & Harbbi, K. H. (2020). A comparative study of Williamson-Hall method and size-strain method through X-ray diffraction pattern of cadmium oxide nanoparticle. AIP Conference Proceedings. https://doi.org/10.1063/5.0033762
  • [24] Magalhães, S., Cabaço, J. S., Mateus, R., Faye, D. Nd., Pereira, D. R., Peres, M., Lorenz, K., Díaz-Guerra, C., Araújo, J. P., & Alves, E. (2021). Crystal mosaicity determined by a novel layer deconvolution Williamson-Hall method. CrystEngComm, 23(10), 2048-2062. https://doi.org/10.1039/d0ce01669a
  • [25] Warren, B. E., & Averbach, B. L. (1950). The Effect of Cold-Work Distortion on X-Ray Patterns. Journal of Applied Physics, 21(6), 595-599. https://doi.org/10.1063/1.1699713
  • [26] Turunen, M. J., Keijser, Th. de, Delhez, R., & Pers, N. M. van. der. (1983). A method for the interpretation of the Warren-Averbach mean-squared strains and its application to recovery in aluminium. Journal of Applied Crystallography, 16(2), 176-182. https://doi.org/10.1107/s0021889883010225
  • [27] Bourniquel, B., Sprauel, J. M., Feron, J., & Lebrun, J. L. (1989). Warren-Averbach Analysis of X-ray Line Profile (even truncated) Assuming a Voigt-like Profile. In G. Beck, S. Denis & A. Simon (Eds.), International Conference on Residual Stresses: ICRS2 (pp.184-189). Springer Netherlands. https://doi.org/10.1007/978-94-009-1143-7_29
  • [28] Drits, V. A., Eberl, D. D., & Środoń, J. (1998). XRD Measurement of Mean Thickness, Thickness Distribution and Strain for Illite and Illite-Smectite Crystallites by the Bertaut-Warren-Averbach Technique. Clays and Clay Minerals, 46(1), 38-50. https://doi.org/10.1346/ccmn.1998.0460105
  • [29] Marinkovic, B., Avillez, R. R. de, Saavedra, A., & Assunção, F. C. R. (2001). A comparison between the Warren-Averbach method and alternate methods for X-ray diffraction microstructure analysis of polycrystalline specimens. Materials Research, 4(2), 71-76. https://doi.org/10.1590/s1516-14392001000200005
  • [30] Ichikawa, R. U., Martinez, L. G., Imakuma, K., & Turrillas, X. (September 2014). Development of a methodology for the application of the Warren-Averbach method. Anais Do V Encontro Científico de Física Aplicada. https://doi.org/10.5151/phypro-ecfa-049
  • [31] Sanz, A., Bastida, J., Caballero, A., & Kojdecki, M. (2018). X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains: influence of kaolin raw material. Clay Minerals, 53(3), 471-485. https://doi.org/10.1180/clm.2018.34
  • [32] Balzar, D. (1992). Profile fitting of X-ray diffraction lines and Fourier analysis of broadening. Journal of Applied Crystallography, 25(5), 559-570. https://doi.org/10.1107/s0021889892004084
  • [33] Vargas, R., Louër, D., & Langford, J. I. (1983). Diffraction line profiles and Scherrer constants for materials with hexagonal crystallites. Journal of Applied Crystallography, 16(5), 512-518. https://doi.org/10.1107/s0021889883010924
  • [34] Langford, J. I., Boultif, A., Auffrédic, J. P., & Louër, D. (1993). The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide. Journal of Applied Crystallography, 26(1), 22-33. https://doi.org/10.1107/s0021889892007684
  • [35] Langford, J. I., Louër, D., & Scardi, P. (2000). Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. Journal of Applied Crystallography, 33(3), 964-974. https://doi.org/10.1107/s0021889800004602
  • [36] Ungár, T., Dragomir-Cernatescu, I., Louër, D., & Audebrand, N. (2001). Dislocations and crystallite size distribution in nanocrystalline CeO2 obtained from an ammonium cerium(IV)-nitrate solution. Journal of Physics and Chemistry of Solids, 62(11), 1935-1941. https://doi.org/10.1016/s0022-3697(01)00029-4
  • [37] Leoni, M., & Scardi, P. (2004). Nanocrystalline domain size distributions from powder diffraction data. Journal of Applied Crystallography, 37(4), 629-634. https://doi.org/10.1107/s0021889804013366
  • [38] Scardi, P., & Leoni, M. (2004). Whole Powder Pattern Modelling: Theory and Applications. In E. J. Mittemeijer & P. Scardi (Eds.), Diffraction Analysis of the Microstructure of Materials (pp. 51-91). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06723-9_3
  • [39] Scardi, P., & Leoni, M. (2006). Line profile analysis: pattern modelling versus profile fitting. Journal of Applied Crystallography, 39(1), 24-31. https://doi.org/10.1107/s0021889805032978
  • [40] Scardi, P., Azanza Ricardo, C. L., Perez-Demydenko, C., & Coelho, A. A. (2018). Whole powder pattern modelling macros for TOPAS. Journal of Applied Crystallography, 51(6), 1752-1765. https://doi.org/10.1107/s160057671801289x
  • [41] Ahmoum, H., Sukor Su’ait, M., Ataollahi, N., Ubaidah Syafiq Mustaffa, M., Boughrara, M., Chelvanathan, P., Sopian, K., Li, G., Kerouad, M., Scardi, P., & Wang, Q. (2021). Suppressing the secondary phases via N2 preheating of Cu2ZnSnS4 thin films with the addition of oleylamine and/or 1-Dodecanethiol solvents. Inorganic Chemistry Communications, 134, 109031. https://doi.org/10.1016/j.inoche.2021.109031
  • [42] Cervellino, A., Giannini, C., Guagliardi, A., & Ladisa, M. (2005). Nanoparticle size distribution estimation by a full-pattern powder diffraction analysis. Physical Review B, 72(3). https://doi.org/10.1103/physrevb.72.035412
  • [43] Giannini, C., Guagliardi, A., Zanchet, D., Cervellino, A., & Ladisa, M. (2005). X-ray powder diffraction characterization of nanoparticles. Acta Crystallographica, Section A, Foundations of Crystallography, 61(a1), c405-c405. https://doi.org/10.1107/s0108767305082814
  • [44] Cernuto, G., Masciocchi, N., Cervellino, A., Colonna, G. M., & Guagliardi, A. (2011). Size and Shape Dependence of the Photocatalytic Activity of TiO2 Nanocrystals: A Total Scattering Debye Function Study. Journal of the American Chemical Society, 133(9), 3114-3119. https://doi.org/10.1021/ja110225n
  • [45] Delgado-López, J. M., Frison, R., Cervellino, A., Gómez-Morales, J., Guagliardi, A., & Masciocchi, N. (2013). Crystal Size, Morphology, and Growth Mechanism in Bio-Inspired Apatite Nanocrystals. Advanced Functional Materials, 24(8), 1090-1099. https://doi.org/10.1002/adfm.201302075
  • [46] Benyahia, D., Kubiszyn, Ł., Michalczewski, K., Kębłowski, A., Martyniuk, P., Piotrowski, J., & Rogalski, A. (2016). Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Optical and Quantum Electronics, 48(9). https://doi.org/10.1007/s11082-016-0698-4
  • [47] Wróbel, J., Grodecki, K., Benyahia, D., Boguski, J., Murawski, K., Michalczewski, K., Grzonka, J., Umana-Membreno, G., Kubiszyn, Ł., Kębłowski, A., Michałowski, P. P. P., Gomółka, E., Martyniuk, P., Piotrowski, J., Rogalski, A., & Gorczyca, K. (2018). Structural and optical characterization of the high quality Be-doped InAs epitaxial layer grown on GaAs substrate. In P. Struk & T. Pustelny (Eds.), 13th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods. SPIE. https://doi.org/10.1117/12.2503624
  • [48] Kojdecki, M. A. (2004). Approximate Estimation of Contributions to Pure X-Ray Diffraction Line Profiles from Crystallite Shapes, Sizes and Strains by Analysing Peak Widths. Materials Science Forum, 443-444, 107-110. https://doi.org/10.4028/www.scientific.net/msf.443-444.107
  • [49] Kojdecki, M. A., Mielcarek, W., Prociów, K., & Warycha, J. (2009). Comparison of two standards for powder X-ray diffractometry. Zeitschrift für Kristallographie, Supplement 30, 183-188. https://doi.org/10.1524/9783486992588-030
  • [50] Windover, D., Gil, D. L., Henins, A., & Cline, J. P. (2009). D-57 NIST SRM 2000 - A High Resolution X-ray Diffraction Standard Reference Material. Powder Diffraction, 24(2), 171-171. https://doi.org/10.1154/1.3176002
  • [51] Kaiser, D. L., & Watters, R. (2012). Certificate of Analysis - Standard Reference Material 2000 - Calibration Standard for High-Resolution X-Ray Diffraction. National Institute of Standards & Technology, Gaithersburg, MD 20889.
  • [52] Deutsch, M., & Hart M. (1982). Wavelength energy shape and structure of the Cu Kα_1 X-ray emission line. Physical Review B, 26(10), 5558-5567. https://doi.org/10.1103/physrevb.26.5558
  • [53] Härtwig, J., Hölzer, G., Wolf, J., & Förster, E. (1993). Remeasurement of the profile of the characteristic CuKα emission line with high precision and accuracy. Journal of Applied Crystallography, 26(4), 539-548. https://doi.org/10.1107/s0021889893000160
  • [54] Serafinczuk, J., Pawlaczyk, L., Moszak, K., Pucicki, D., Kudrawiec, R., & Hommel, D. (2022). X-ray diffraction studies of residual strain in AlN/sapphire templates. Measurement, 200, 111611. https://doi.org/10.1016/j.measurement.2022.111611
  • [55] Serafińczuk, J., Moszak, K., Pawlaczyk, Ł., Olszewski, W., Pucicki, D., Kudrawiec, R., & Hommel, D. (2020). Determination of dislocation density in GaN/sapphire layers using XRD measurements carried out from the edge of the sample. Journal of Alloys and Compounds, 825, 153838. https://doi.org/10.1016/j.jallcom.2020.153838
  • [56] Massidda, S., Continenza, A., Freeman, A. J., de Pascale, T. M., Meloni, F., & Serra, M. (1990). Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb. Physical Review B, 41(17), 12079-12085. https://doi.org/10.1103/physrevb.41.12079
  • [57] Kojdecki, M. A. (2001). Deconvolution by Example - Computational Test of Effective Algorithms. Materials Science Forum, 378-381, 12-17. https://doi.org/10.4028/www.scientific.net/msf.378-381.12
  • [58] Wilson, A.J.C. (1963). Mathematical theory of X-ray powder diffractometry. Philips Technical Library.
Uwagi
This work has been completed with financial support under the program of the Polish Ministry of Education and Science: “Regional Initiative of Excellence” in 2019-2023, project No. 014/RID/2018/19 with the funding amount of 4 589 200 PLN.
Identyfikator YADDA
bwmeta1.element.baztech-51e2abec-5dc6-4c8e-88ac-189cd3b993a4