Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents techniques that allows to rigorously integrate dissipative partial differential equations. A full case study of an application to the Burgers equation on the line with periodic boundary conditions is presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--7
Opis fizyczny
Bibliogr. 12 poz., tab.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
Bibliografia
- [1] Lohner, R.J. “Computation of Guaranteed Enclosures for the Solutions of Ordinary Initial and Boundary Value Problems”. Computational Ordinary Differential Equations, J.R. Cash, I. Gladwell Eds., Oxford: Clarendon Press, 1992.
- [2] Zgliczyński, P. “C1-Lohner algorithm”. Foundations of Computational Mathematics 2 (2002): 429–465.
- [3] Mrozek, M., and K. Mischaikow. “Chaos in Lorenz equations: a computer assisted proof ”. Bull. Amer. Math. Soc. (N.S.), 33 (1995): 66–72.
- [4] Kapela, T., and P. Zgliczyński. „The existence of simple choreographies for the N-body problem — a computer assisted proof ”. Nonlinearity 16 (2003): 1899–1918.
- [5] Tucker, W. “A Rigorous ODE Solver and Smale’s 14th Problem”. Found. Comput. Math. 2 (2002): 53–117.
- [6] Zgliczyński, P. and K. Mischaikow. „Rigorous Numerics for Partial Differential Equations: the Kuramoto--Sivashinsky equation”. Foundations of Computational Mathematics 1 (2001): 255–288.
- [7] Zgliczyński, P. “Attracting fixed points for the Kuramoto--Sivashinsky equation — a computer assisted proof ”. SIAM Journal on Applied Dynamical Systems 1(2), 2000: 215–288.
- [8] Zgliczyński, P. “Rigorous numerics for dissipative Partial Diff erential Equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE -a computer assisted proof”. Foundations of Computational Mathematics 4 (2004): 157–185.
- [9] Zgliczyński, P. “Rigorous Numerics for Dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs”. Topological Methods in Nonlinear Analysis. Preprint available online http://www.ii.uj.edu.pl/zgliczyn/papers/publ.htm
- [10] Cyranka, J. “Rigorous integration of Burgers equation” [in preparation].
- [11] CAPD — Computer Assisted Proofs in Dynamics, a package for rigorous numeric, http://capd.ii.uj.edu.pl.
- [12] Fefferman, Ch. “Existence and Smoothness of the Navier-Stokes Equation”. The Millenium problem description. Available online http://www.claymath.org/millennium/NavierStokes_Equations/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51e222da-60b1-4d5d-939a-5128be18423f