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Rigorous Integration of Burgers Equation 
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Th is paper presents techniques that allows to rigorously integrate dissipative partial diff erential equations. A full case study of 
an application to the Burgers equation on the line with periodic boundary conditions is presented. 
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Introduction 

Basically speaking as rigorous numerics we mean methods 
of solving diff erential equations that operate on intervals 
and produce intervals that always contain the exact 
solution. Rigorous numerics for ordinary diff erential 
equations (ODEs) is a  well established and analysed 
topic. Th ere exist a  few algorithms that off er reliable 
computations of the solution trajectories of ODEs based 
on interval arithmetics. Th e approach used in this paper 
is based on the presentation by Lohner in [1], see also 
[2]. It has made possible to prove many facts about the 
dynamics of certain ODEs (e.g. fixed points, periodic 
orbits and existence of attractors), let us mention the 
Rossler equation, the Lorenz equation and n-body 
problem (see [2–5]). In context of rigorous integration 
of ODEs we consider an abstract Cauchy problem 

 (1)

(2)

Rigorous numerics for dissipative PDEs 

Research considering rigorous numerics for partial 
diff erential equations is still at a pioneering stage. As far 
as I  know, for non-stationary dissipative PDEs there 
exists only one algorithm, described in [6–9]. It has been 
successfully used for proving existence of fixed points for 
the Kuramoto-Sivasinsky equation. Th e analysis below is 
based on this approach. In Section 2 an application to 
the Burgers equation is provided. 

Motivation 

Th e aim of this section is to answer the question: ”Why 
we want to rigorously integrate dissipative PDEs?”. Th ere 
is a considerable amount of numerical solvers available 
that are capable of obtaining approximate solutions of 
PDEs that are based on the Finite Diff erence and Finite 
Element Methods. Still, all of them have some limitations. 

{
ẋ(t) = f(x(t)),

x(0) = x0.

x : [0, T ] → R
n, f : R

n → R
n, f ∈ C∞. Further-

more we denote by ϕ(tk, x0) a solution of (1) at
time tk and by [x] an interval set [x] ⊂ R

n com-
pact and connected, we also use another notation
[x] = Πn

k=1[x̂
−
k , x̂+

k ], [x̂−
k , x̂+

k ] ⊂ R, −∞ < x̂−
k ≤

x̂+
k < ∞. The goal of a rigorous ODEs solver is to
find a set [xk] such that

ϕ(tk, [x0]) ⊂ [xk]

tk ∈ [0, T ], [x0], [xk] are interval sets. There are
some subtle issues regarding set representation in the
Lohner algorithm, which are discussed e.g. in [2]. Let
us only mention that it is highly ineffective to store
an interval set (Πn

k=1[a
−
k , a+

k ]) explicitly, because it
leads to the so-called wrapping effect. This leads to
large over-estimates and prevents us from integrating
over a longer time. Instead we store [x] as m([x])
and r([x]) = [x] − m([x]), the middle point and the
remainder separately.
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Generally, when we use them we can never answer the 
question whether what is being observed is a consequence 
of the dynamics embedded in an equation or only an 
illusion created by a loss of some important information 
as a result of using computer arithmetics that is capable 
of representing only finite precision numbers. In the 
present approach interest lies in proving some facts about 
the dynamics of a system that approximate simulations 
may suggest. Th us the accuracy of results is of critical 
importance, since we aim at having a  reliable solver 
providing results that can be used in mathematical 
proofs. Moreover, from engineering point of view, when 
some proved facts about dynamics and a-priori bounds 
are available we can prevent performing many time 
consuming simulations. Another issue is related to the 
phenomenon called the “butterfly eff ect”, that may arise 
when an equation is extremely prone to changes in initial 
conditions. Th e consequence is that very small changes 
in initial conditions leads to significant changes in the 
solution at an arbitrary time. Th e well known examples 
of equations that exhibit the butterfly eff ect are the 
Navier-Stokes (one observe it in the weather forecasts) 
and the Lorenz equations. It is of great interest to detect 
situations when this phenomenon can significantly aff ect 
calculations. 

Dissipative PDEs 

We consider dissipative PDEs are considered (dPDEs), 
this class contains many of the extensively studied 
equations (Navier-Stokes, Ginzburg-Landau, Kuramoto-
-Sivashinsky). PDEs of the following type are being 
considered: 

(3)

where the eigenvalues satisfy: 

For this class of PDEs we can use the method of self-
consistent bounds described in [6–9]. 

Burgers equation 

To illustrate the approach we study the Burgers equation 
with viscosity 

Details 

In this section we give specific sets that we use for our pur-
poses, moreover we provide fundamental theoretic result. 

 (7) 

du

dt
= Lu + N(u,Du, . . . , Dru).

u : R
n × [0, T ] → R

n, x ∈ T
d d-dimensional torus,

L is linear operator, N is a polynomial, Ds- s-th
collection of partial derivatives of order s. Moreover
L is diagonal in Fourier basis {eikx}k∈Zd :

Leikx = λkeikx

λk = −ν(|k|)|k|p, 0 < ν0 ≤ ν(|k|) ≤ ν1, p > r.

We impose periodic boundary conditions, then u(·, x)
=

∑
k uk(·)eikx and we can replace (3) with the fol-

lowing system of ODEs:

dak

dt
= λkak + Nk(u). (4)

du

dt
= −u · ux + νuxx, (5)

with ν > 0 a viscosity constant, dimension d = 1,
u : R × [0, T ] → R, x ∈ R and periodic boundary
conditions u(·, x) = u(·, x + 2kπ). Parameters in (4)
are as follows: λk = −k2ν, r = 1, p = 2 and ν(|k|) =
ν is constant. In the Fourier domain it has following
form

dak

dt
= −i

k

2

( ∑
k1∈Z

ak1ak−k1

)
− νk2ak, (6)

where ak ∈ Hk ⊂ C, further refereed to as the
Fourier modes. In order to be able to solve numer-
ically such an infinite set of ODEs using rigorous
methods presented in Section 1.5 it has to be ex-
plained using finite tools somehow. To be able to
rigorously integrate a PDE over time we must em-
bed an infinite number of equations to finite struc-
tures and express them in a programmable way. One
possibility is given in [9] , this approach is called the
method of self-consistent bounds. The space to which
{ak}k∈Z belongs is a Hilbert space H = ⊕k∈ZHk,
(Hk are finite dimensional subspaces of H that are
mutually orthogonal) is split into two subspaces Xm

= ⊕|k|≤mHk = Pm(H) (comprising the modes that
are the most relevant to the dynamics of the system),
and the orthogonal part Ym containing the remain-
ing modes, m is arbitrarily chosen constant, Pm is the
projection onto Xm. We operate on a specific class
of sets i.e. the self-consistent sets i.e. W ⊕ T ⊂ H,
W ⊂ Xm, Ym ⊃ T = Π|k|>mBk(ck, rk), T is the so-
called tail and where Bk is a ball of center ck and
radius rk. One may either keep T constant in time
or update it at each time step. The issue of choos-
ing a proper size m ∈ N of the projection is quite
subtle, generally the larger m the more precise the
results are, as well as computation time that rises
exponentially.

H = {(ak) :
∑

k∈Z
|ak|2 < ∞}, Hk ⊂ C,

Ŵ ⊂ Xm = Pm(H), Ym ⊃ T̂ = Π|k|>mB̂k,

Hk ⊃ B̂k =
[
− C

|k|s , C
|k|s

]
×

[
− C

|k|s , C
|k|s

]
⊃

⊃ BC(0, C
|k|s ), |k| ≥ m

C ∈ R+ ∪ {0}, s ∈ R+.
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Pm is a symmetric Galerkin projection, i.e. if k  Pm then 
−k  Pm, Hk are compact and connected. 

We remark that finite number of interval sets from

Th e last statement is essentially thesis of Th eorem 11 of 
[9], which states that dissipative PDEs have solutions 
within self-consistent bounds for a  sufficiently short 
time. 

Modification of original algorithm 

In context of dPDEs instead of (1) we have to solve 
following ODE: 

Let us provide some possible simplifications regarding 
g(x(t), y(t)). Later on in Chapter 2 the first possibility is 

used and explicit bounds for g are given, only first is 
presented, because the second one has proved to be 
ineff ective. 

First case 

Second case 

Example application 

enables rigorous integration. Th e more interesting case, 
studied by numerical analysis ts, taking the initial value 
u(0, x) = sin(x) with  = 0.01 is currently beyond present 
capabilities, see (11). Th is case has nontrivial dynamics, 
there is shock-like discontinuity developing that causes 
instability no matter what numerical scheme is used. 
Experiments show that for  ≈ 0.00001 after a short time 
all solvers (available in Matlab package) tended to break 
down. 

Initial bounds 

Firstly, we need some estimates regarding the tail 
influence, because we performed dimension splitting and 
cut off  infinite number of modes, still they have to be 
present in our calculations in order to produce rigorous 
bounds. Let us provide a  lemma that gives explicit 
bounds for the tail influence, we mean [] in (9), 
moreover it is constant in time. 

(10)

Xm and, as for the tail, only the constants C and s

defining the radius of the ball BC(0, C
|k|s ) are needed

to be stored, thus such a sets can be represented in a
computer finite memory. Moreover this set satisfies
all assumptions [9] (Definition 3) thus we can deduce:

1. Ŵ ⊕ T̂ is a compact subset of H,

2. uniform convergence limn→∞ Pn(F (u)) = F (u)
uniformly,

3. ∀W1 ⊕ T1 - self-consistent bounds for (4) ∃L̂

∃h > 0 such that for all l > L̂ and ∀u ∈ Pl(Ŵ⊕
T̂ ) ϕl([0, h], u) ⊂ W1 ⊕ T1, and |T1,k| ≤ C1

|k|s ,
|k| > m.

dx

dt
= f(x(t)) + g(x(t), y(t)) (8)

here g : R
l × R

n → R
l, it is assumed that additional

knowledge about y(t) is available, e.g. is bounded
and continuous. We reduce problem of solving (8)
to the problem of solving following differential inclu-
sion, meaning that every solution of (8) is contained
in a solution of

dx

dt
(t) ∈ f(x) + [δ] (9)

Let us fix y0 ∈ [δ] ⊂ R
l then denote by ϕ(t, x0, y0)

the solution of the associated Cauchy problem: ẋ(t)
= f(x(t)) + y0, x(0) = x0. We present a brief de-
scription of the suitable algorithm, we find

1. a bound [xt] ⊂ R
l such that ϕ(t, x0, y0) ⊂ [xt]

can be found using original Lohner algorithm,
see [2],

2. [Δ] ⊂ R
l such that ϕ(t, [x0], [y0]) ⊂ ϕ(t, x0, y0)+

[Δ], see [9],

3. [xt] ⊂ R
l such that ϕ(t, [x0], [y0]) ⊂ [xt] =

[xt] + [Δ], [x0] ⊂ R
l, [y0] ⊂ (Cb([0,∞), Rn).

We look for [δ] = ([ε−1 , ε+1 ], . . . , [ε−l , ε+l ]) i.e. bounds
constant in time and separated along coordinates,
such that gi(x(t), y(t)) ∈ [ε−i , ε+i ] ∀i = 1 . . . l and
∀t ∈ [0, T ].

We look for [δ] constant in time and uniform for
all coordinates [δ] = ([ε−, ε+], . . . , [ε−, ε+]). In or-
der to find suitable ε we take ε− = mini=1...n {ε−i },
ε+ = maxi=1...n {ε+i }, where ε−i , ε+i from previous ap-
proach.

Let us analyse example of (5) with a periodic bound-
ary condition, and initial condition u(0, x) = sin (x).
Because the function u is real-valued, we operate on
the invariant subspace of all symmetric projections
ak = a−k. The algorithm has been developed that

Lemma 1. Let (9) be the differential inclusion that
rises from (6), l depends on the projection size, x(t) �→
(a1(t), a2(t), . . . , al(t)), [δ] ⊂ R

l, [δ] = ([δ1], . . . , [δl]),

[δi] = |k|
2

(
C

(m+1)s

√
E0

√
2k + 2C2

√(
1 + 1

2m

) (
1 + 1

2(m+k)

)
1

(2s−1)

(
1

(m+k)m

)s− 1
2
)
·

[−1, 1] then

maxt∈[0,T ] gi(x(t), y(t)) ≤ δ+
i ,

mint∈[0,T ] gi(x(t), y(t)) ≥ δ−i , i = 1, . . . , l
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Trapping regions 

Energy 

Suitable trapping region 

We look for sets enclosing values of all modes in (6) of 
such property that the vector field on boundary is 
pointing inside. 

|ak| ≤ C
|k|s , |k| > N

}
 is a  trapping region for each 

symmetric Galerkin projection. 

To prove that the specified sets are in fact trapping 
regions we have to check that on boundary the vector 
field is pointing inside, for the details the reader should 
refer to [10]. 

Simulations 

In this section we present results of a few simulations we 
performed. Parameters: m is size of the Galerkin projection, 
C and s are defining radius of the ball in (7) h is the time 
step,  is the viscosity constant in (5), E is value of the 
energy at the end of computations, moreover we give our 
program’s running time in minutes. Th e computer 
program has been written in C++ language (gnu compiler), 
using CAPD library [11]. All calculations were performed 
on Windows XP, Core2Duo 2.20 GHz CPU computer. 

nr  m C s h ≈ E 
run-
ning 
time 

1 20 8 1.6 4 0.0001 0.0001 2.9 
2 25 10 1.6 4 0.0001 0.00001 5.5 
3 50 4 1 4 0.00005 0.000001 9.2 
4 100 8 1 4 0.00001 0.000001 9.2 
5 10 12 4 4 0.0001 0.00017 20.4 
6 20 16 1.6 4 0.0001 0.0001 18.7 

Algorithms used 

Because of the requirement of time efficiency we used 
C++ language with CAPD library. Th is library is mainly 
used for rigorous integration of ODEs. In the problem 
of the rigorous integration of the Burgers equation it 
turned out that the algorithms used originally in [11] 
were ineff ective in diff erentiating the Galerkin projections 
of high dimension, since the algorithm used there is 
enforcing a decrease of time step with an increase of the 
projection size. Th erefore it was necessary to derive 
classes that overshadow original methods and provide 
more dedicated and flexible algorithms. Th e rigorous 
integration of PDEs is at a  pioneering stage at the 
moment. 

The future 
The Navier-Stokes equations and the problems 
related 

We think that the Navier-Stokes equations in three 
dimensional space are a perfect subject of research. 

It is widely known that they have refused to reveal their 
secrets for two centuries. Many mathematicians are 
involved in research aimed at providing an answer to the 
one of the most splendid problems of whole mathematics: 
whether smooth solutions of Navier-Stokes exist or there 
are cases when they do not, see [12] for description. It 
is hoped that the present research will result in a piece 
of knowledge that will provide some help in 
understanding the mysteries that lie beneath the Navier-
-Stokes equations. 

Diffculties of rigorous numerical integration 
of the Navier-Stokes equations 

We consider examining the Burgers equation from the 
rigorous numerics point of view as a  perfect starting 
point to the final goal, which is the study of the Navier-

In this section we aim at construction of a set de-
pending on E0 - initial value of the energy, C, s - con-
stants from the bound |ak| ≤ C

|k|s and m - Galerkin
projection size, noted by N0, of such property that
on the boundary of this set the vector field is pointing
inside and for each solution of (6) after application of
a symmetric Galerkin projection, if its initial value is
inside then the solution will not leave it at any time.
This set is used extensively in our algorithm.

Energy of (4) is defined by E({ak}k∈Z =
∑

k∈Z
|ak|2

and corresponding initial value: E0 =
∑

k∈Z
|ak(0)|2

. The lemma below gives exact value of velocity of
the energy of (5) on the line. Note that as a corollary
we state that E({ak}k∈Z converges to 0.

Lemma 2. For any solution of (5) such that all nec-
essary Fourier series converge and a−k = ak

dE

dt
= −2ν

∑
|k|∈Z

k2aka−k

Lemma 3. Let D = 2s · 7 + 2s−1 + ( 5
6 )

s√ 3
8√

2s−1
, C >

√
E0N

s, N >
(√

E0D
ν

) 2
2s−3

and E0 ∈ R
+ −{0} then

N0(E0, N, C, s) =
{

{ak} | E({ak}) ≤ E0,

d
dtui +

∑n
j=1 uj

∂ui

∂xj
= νΔui − ∂p

∂xi
+ fi(x, t),

∂

j

divu =
∑n

i=1
∂ui

∂xi
= 0.

i = 1, . . . , n,
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-Stokes equation with n = 2 and n = 3. Especially, it is 
planned to work on the latter because of the wide scope 
of problems it involves. Certainly numerical rigorous 
integration of the Navier-Stokes equation in 3D will 
require huge amount of computational power and 
development of new methods and algorithms. Th e main 
difficulty is the polynomial increase of storage space and 
computational time with increase of the dimension, 
when we switch from one dimensional to three 
dimensional, generally the complexity changes in 
a fashion O(w(N))  O(w(N)

3
). 

Remarks 

As for the limitations of the size of this paper we do not 
provide details of the proofs and source codes that will 
be given in [10]. 
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