Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results related to the simulation of dust-separating tangential cyclones: single cyclones of various geometries, and an axial multi-cyclone with fixed geometries and components. Its goal was to apply low-cost analyses for cyclones in industrial realization. Therefore, the presented research was applied with simulation methodology as a problem of Computational Fluid Dynamics. The models were analyzed using SolidWorks Flow Simulation software. The presented dust collectors are real-life objects, applied in industrial facilities. For a multi-cyclone, the increase in the number of blades, from 5 to 8, together with the change in the angle of a blade’s pitch i.e., 30° and 45°, resulted in dust concentration along the internal walls from just 10% for 5 blades up to c.a. 37.5% for 6 blades, and c.a. 50% for 8 blades, whereas the dust concentration in the device’s central part equals c.a. 20% for the last option. The model validation draws attention to the potential applicability of the software in flow issues alongside common and more complex numerical environments.
Czasopismo
Rocznik
Tom
Strony
art. no. 174095
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Poland
autor
- Faculty of Transport, Warsaw University of Technology, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Poland
- Faculty of Economics,Koszalin University of Technology, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Poland
autor
- Faculty of Mechanical Engineering, University of Zielona Gora, Poland
autor
- Faculty of Environmental Engineering and Energy, PoznanUniversity of Technology, Poland
autor
- Faculty of Environmental Engineering and Energy, PoznanUniversity of Technology, Poland
Bibliografia
- 1. All3DP. The Best CAD Software for Engineers. Creative Commons Attribution 4.0 International License. [https://all3dp.com/1/best-cad-software/].
- 2. Avci A, Karagoz I, Surmen A. Development of a new method for evaluating vortex length in reversed flow cyclone separators. Powder Technology 2013; 235: 460–466, https://doi.org/10.1016/j.powtec.2012.10.058.
- 3. Babaoğlu N, Parvaz F, Hosseini S, Elsayed K, Ahmadi G. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology 2021; 384: 82–99, https://doi.org/10.1016/j.powtec.2021.02.008.
- 4. Beaulac P, Issa M,Ilinca A, Brousseau J. Parameters Affecting Dust Collector Efficiency for Pneumatic Conveying: A Review. Energies 2022; 15: 916, https://doi.org/10.3390/en15030916.
- 5. Bernardo S, Mori M, Peres AP, Dionísio RP. 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles. Powder Technology 2006; 162: 190-200, https://doi.org/10.1016/j.powtec.2005.11.007.
- 6. Chen G, Fan J, Zhang P, Wang W. Experimental and CFD investigation on effects of internals on the flow pattern and performance of a divergent cyclone separator. Journal of the Taiwan Institute of Chemical Engineers 2020; 115: 160–168, https://doi.org/10.1016/j.jtice.2020.10.011.
- 7. Chen J, Jiang Z, Yang B, Wang Y, Zeng F. Effect of inlet area on the performance of a two-stage cyclone separator. Chinese Journal of Chemical Engineering 2022; 44: 8–19, https://doi.org/10.1016/j.cjche.2021.06.003.
- 8. Cortes C, Gil A. Modeling the Gas and Particle Flow Inside Cyclone Separators. Progress in Energy and Combustion Science 2007; 33: 409–452, https://doi.org/10.1016/j.pecs.2007.02.001.
- 9. Dehdarinejad E, Bayareh M. Experimental and numerical investigation on the performance of a gas-solid cyclone with twisted baffles and roughened cone surface. Powder Technology 2023, 420: 118401, https://doi.org/10.1016/j.powtec.2023.118401.
- 10. Dehdarinejad E, Bayareh M, Ashrafizaadeh M. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator.Chemical Papers 2022; 76: 5579–5599, https://doi.org/10.1007/s11696-022-02261-6.
- 11. Dries H, Patel M. New Advances in Third Stage Separators. World Refining 2000; 10: 30–33.https://doi.org/10.1016/S0262-1762(00)89036-7
- 12. Dziubak T. Theoretical and Experimental Studies of Uneven Dust Suction from a Multi-Cyclone Settling Tank in a Two-StageAir Filter. Energies 2021; 14: 8396, https://doi.org/10.3390/en14248396.
- 13. Dziubak T. Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones byModification of Their Design. Energies 2022; 15: 3871, https://doi.org/10.3390/en15113871.
- 14. Dziubak T, Bąkała L, Dziubak SD, Sybilski K, Tomaszewski M. Experimental Research of Fibrous Materials for Two-Stage Filtration of the Intake Air of Internal Combustion Engines. Materials 2021; 14: 7166, https://doi.org/10.3390/ma14237166.
- 15. Dziubak T, Boruta G. Experimental and Theoretical Research on Pressure Drop Changes in a Two-Stage Air Filter Used in Tracked Vehicle Engine. Separations 2021; 8(6): 71, https://doi.org/10.3390/separations8060071.
- 16. Energy Regulatory Office. Electricity Market Characteristics. [https://www.ure.gov.pl/en/markets/electricity/elctricitymrket/292,Electricity-Market-Characteristics.html].
- 17. Elsayed K, Lacor C. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chemical Engineering Science 2010; 65: 6048–6058, https://doi.org/10.1016/j.ces.2010.08.042.
- 18. Elsayed K, Lacor C. Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers & Fluids 2011; 51: 48–59, https://doi.org/10.1016/j.compfluid.2011.07.010.
- 19. Elsayed K, Lacor C. The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones. Computers & Fluids 2012; 68: 134–147, https://doi.org/10.1016/j.compfluid.2012.07.029.
- 20. Esmaeel F, Hossein F. Improving the Efficiency of a Square Cyclone Separator Using the Dipleg –A CFD-Based Analysis. Iranian Journal of Chemistry and Chemical Engineering 2022; 41: 670–681, https://doi.org/10.30492/IJCCE.2020.127666.4129.
- 21. Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes. 2nd edition. Springer, Heidelberg: 2008.
- 22. Inglezakis V J, Stylianou MA, Loizidou M, Zorpas A A. Experimental studies and modelling of clinoptilolite and vermiculite fixed beds for Mn2+ , Zn2+ , and Cr 3+removal. Desalination and Water Treatment 2015; 57: 11610–11622, https://doi.org/10.1080/19443994.2015.1059371.
- 23. Ithape P K, Barve S B, Pande S S, Nadgire A R. Effect of Geometric Parameters on the Performance of Cyclone Separator using CFD. Int. J. Curr. Eng. Technol. 2017; 7, 288-292.
- 24. Kamiński K, Królikowski T, Błażejewski A, Knitter R. Significant parameters identification for optimal modelling of the harp-type flat-plate solar collector. Smart Innovation, Systems and Technologies 2019b; 155: 495–505, https://doi.org/10.1007/978-981-13-9271-9_41.
- 25. Kamiński K, Znaczko P, Lyczko M, Krolikowski T, Knitter R. Operational properties investigation of the flat-plate solar collector with poliuretane foam insulation. Procedia Computer Science 2019a; 159: 1730–1739 https://doi.org/10.1016/j.procs.2019.09.344.
- 26. Karagoz I, Avci A, Surmen A, Sendogan O. Design and performance evaluation of a new cyclone separator. Journal of Aerosol Science 2013; 59: 57–64, https://doi.org/10.1016/j.jaerosci.2013.01.010
- 27. Kim S W, Lee J W, Koh J S, Kim G R, Choi S, Yoo I S. Formation and Characterization of Deposits in Cyclone Dipleg of a Commercial Residue Fluid Catalytic Cracking Reactor. Industrial & Engineering Chemistry Research 2012; 5: 14279–14288, https://doi.org/10.1021/ie301864x.
- 28. Knowlton T M. Cyclone Separators. In Yang W C (ed): Handbook of Fluidization and Fluid-Particle System, 1st edition. Boca Raton, CRC Press: 2003: 599–617.https://doi.org/10.1201/9780203912744.ch22
- 29. Li W, Huang Z, Li G, Ye C. Effects of different cylinderroof structures on the vortex of cyclone separators. Separation and Purification Technology 2022; 296: 121370, https://doi.org/10.1016/j.seppur.2022.121370.
- 30. Mazyana W I, Ahmadi A, Brinkerhoff J, Ahmed H, Hoorfar M. Enhancement of cyclone solid particle separation performance based on geometrical modification: Numerical analysis. Separation and Purification Technology 2018; 191: 276–285, https://doi.org/10.1016/j.seppur.2017.09.040.
- 31. Ming T, Yanzhe Y, Huan Z, Tianzhen Y, Shijun Y, Mengting Z. Research on theoptimization design of solar energy-gas-fired boiler systems for decentralized heating. Energies 2021; 14: 3195, https://doi.org/10.3390/en14113195.
- 32. Misiulia D, Lidén G, Antonyuk S. Performance characteristics of a small scale cyclone separator operated in different flow regimes. Journal of Aerosol Science 2022; 163: 105980, https://doi.org/10.1016/j.jaerosci.2022.105980.
- 33. Muschelknautz E, Greif V. Cyclones and Other Gas-Solids Separators. In Grave J R, Avidan A A, Knowlton T M (eds): Circulating Fluidized Beds, London, Blackie Acad. & Profess: 1997: 181–213.https://doi.org/10.1007/978-94-009-0095-0_6
- 34. Muschelknautz U. Design criteria for multi-cyclones in a limited space. Powder Technology 2019; 357: 2-20, https://doi.org/10.1016/j.powtec.2019.08.057.
- 35. Muschelknautz U. Comparing Efficiency per Volume of Uniflow Cyclones and Standard Cyclones. Chemie Ingenieur Technik 2021; 93(1–2): 91–107, https://doi.org/10.1002/cite.202000149.
- 36. Nakhaei M, Lu B, Tian Y, Wang W, Dam-Johansen K, Wu H. CFD Modeling of Gas–Solid Cyclone Separators at Ambient and Elevated Temperatures. Processes 2020; 8: 228, https://doi.org/10.3390/pr8020228.
- 37. Niechciał J. Cyklony i hydrocyklony (Cyclones and hydrocyclones; in Polish). Wszechświat 2013; 114.
- 38. Nwigbo M N. Design, Fabrication and Performance Evaluation of a Cyclone System for Saw Dust Emission Control. International Journal of Engineering & Technology 2019; 5: 19–25.
- 39. Olkiewicz M, Olkiewicz A, Wolniak R, Wyszomirski A. Effects of pro-ecological investments on an example of the heating industry –case study. Energies 2021; 14: 5959, https://doi.org/10.3390/en14185959.
- 40. Peng W, Hoffmann A C, Dries H. Separation Characteristics of Swirl-Tube Dust Separators. American Institute of Chemical Engineers Journal 2004, 50(1): 87–96, https://doi.org/10.1002/aic.10008.
- 41. Pivato A. Air pollution control 2020-2021. Università Degli Studi di Padova, Padova, Italy. [https://elearning.unipd.it/dicea/pluginfile.php/90369/mod_resource/content/0/02.03a_Cyclones_24-10-2020.pdf].
- 42. Singh P, Couckuyt I, Elsayed K, Deschrijver D, Dhaene T. Shape optimization of a cyclone separator using multi-objective surrogate-based optimization. Applied Mathematical Modelling 2016; 40: 4248–4259, https://doi.org/10.1016/j.apm.2015.11.007.
- 43. Souza F, Salvo R, Martins D. Effects of thegas outlet duct length and shape on the performance of cyclone separators. Separation and Purification Technology 2015; 142: 90–100, https://doi.org/10.1016/j.seppur.2014.12.008.
- 44. Su Y, Zheng A, Zhao B, 2011. Numerical simulation of effect of inlet configuration on square cyclone separator performance. Powder Technology 2011; 210: 293–303, https://doi.org/10.1016/j.powtec.2011.03.034.
- 45. Venkatesh S, Sakthivel M, Sudhagar S. Modification of the cyclone separator geometry for improving the performance using Taguchi and CFD approach. Particulate Science and Technology 2019; 3: 799–808, https://doi.org/10.1080/02726351.2018.1458354.
- 46. Wolniak R, Wyszomirski A, Olkiewicz M, Olkiewicz A. Environmental corporate social responsibility activities in heating industry –case study. Energies 2021; 14: 1930, https://doi.org/10.3390/en14071930.
- 47. Wu D, Yao S, Lin R, Ren Y, Zhou P, Gu Y, Mou J. Dynamic Instability Analysis of a Double-Blade Centrifugal Pump. Applied Sciences 2021; 11: 8180, https://doi.org/10.3390/app11178180.
- 48. Yang J, Sun G, Gao C. Effect of the inlet dimensions on the maximum-efficiency cyclone height. Separation and Purification Technology 2013; 105: 15–23, https://doi.org/10.1016/j.seppur.2012.12.020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51dea048-3b0b-43d9-9b58-5391c26a0b40